Impact of a Trauma Boot Camp on Nurse Knowledge, Skills and Confidence, and **Frequency of Unplanned Intensive Care Admissions**

Jennifer Bath

Radford University

NURS 822: Doctor of Nursing Practice Final Scholarly Project III

Dr. Downey

July 28, 2022

Source Veno

Dr. Wendy Downey, Committee Chair

Dr. Dee Pennington, Committee member

Dr. Ellen Harvey, Committee member

7-28-2022 Date

Date

7/28/2022 ate 7/28/2022

Date

Abstract

Background: As an integral part of the trauma team, nurses provide skilled assessments, critical thinking, and effective communication (Peters et al., 2018). Trauma patients are complex, which requires appropriate education for nurses to meet their needs, yet there is little research on trauma-focused nursing education for inpatient nurses (Garvey et al., 2016). This study explores the impact of a trauma boot camp on nurse trauma knowledge, confidence, and skills and on the frequency of unplanned intensive care (UICU) admissions in trauma patients.

Methods: A quasi-experimental one group study with pre- and post-intervention repeated measures design was used. The convenience sample included nurses employed with < 3 years nursing experience practicing on inpatient surgical units at a Level I Trauma Center. Knowledge and confidence were measured pre- and immediately post-boot camp, and 30, 60, and 90 days later. Skills were measured the day of the boot camp. Unplanned ICU admission data was compared 90 days pre- and post-intervention.

Results: Of the 20 nurses who attended the boot camp, only four participated in the study knowledge, confidence, and demographic data measures. Self-confidence levels from the simulation laboratory course evaluation tool demonstrated significant improvement for all participants in ability to recognize a deteriorating trauma patient (p = 0.0001), ability to perform assessments on a deteriorating trauma patient (p = 0.0002), ability to intervene appropriately for a deteriorating trauma patient (p = 0.0003), and ability to describe use of the facility bladder management protocol and for spinal cord injury patients (p = 0.0001). Skill level had no improvement from the first to final simulation; however, five of the seven simulation groups had an increase in their scores ($p \ge 0.05$). Unplanned ICU admissions significantly increased from pre- to post-boot camp ($p \le 0.05$).

Conclusions: A trauma boot camp incorporating simulation-based training followed by debrief and then lecture may improve confidence levels in inpatient trauma nurses with < 3 years of practice experience. Further research is needed to determine the effects on retention of knowledge, skill, and patient outcomes related to UICU admissions.

Key words: trauma boot camp, simulation-based training, knowledge, skills, confidence, unplanned ICU admissions

Dedication

This work is dedicated to my parents for their unwavering support in all my pursuits, their constant guidance, for always letting me know I can do or be anything I want if I work for it and loving me unconditionally. Without them, I would not be where I am today.

Acknowledgements

I would like to thank the following for their mentoring, guidance, and support during my doctoral work:

Dr. Wendy Downey Dr. Dee Pennington Dr. Barbara Faris Dr. Ellen M. Harvey Dr. Cynthia Ward Amanda Anderson MSN Dr. Tonja Locklear Pam Boremski RN, MS Mariana Salamoun BS, MA Dr. Jami Salzberg Dr. Euna Lee

TABLE OF CONTENTS

CHAPTER ONE. INTRODUCTION	
PROBLEM AND SIGNIFICANCE	9
PURPOSE OF THE PROJECT	
THEORETICAL FRAMEWORK	
PICOT QUESTIONS	
RESEARCH QUESTION/HYPOTHESIS	
DEFINITION OF KEY TERMS AND VARIABLES	
CHAPTER TWO. LITERATURE REVIEW	
SEARCH STRATEGIES	
SIMULATION-BASED TRAINING (SBT)	
KNOWLEDGE RETENTION AND SBT	
SKILL LEVEL AND SBT	
CONFIDENCE LEVEL AND SBT	
TRAUMA UNPLANNED ICU ADMISSIONS AND SBT	
CHAPTER THREE. METHODOLOGY	
Study Design	
STUDY SUBJECTS	
STUDY SETTING	
HUMAN SUBJECTS PROTECTION	
PHASE ONE: STUDY PROCEDURE	
PHASE II: INTERVENTION	
PHASE III: POST-INTERVENTION	
Study Instruments	
Demographic Data Survey	
Knowledge Evaluation Tool	
Confidence Evaluation Tools	
Skill Performance Evaluation Tool	
UICU Admission Trauma Registry Data	
DATA COLLECTION AND DATA SECURITY	
EVALUATION PLAN	
Variables	
Operational Definitions	
Data Management for Analysis	
STATISTICAL ANALYSIS	
Descriptive Statistic Analysis	
Inferential Statistic Analysis	
CHAPTER FOUR: RESULTS	
CHAPTER FIVE: CONCLUSIONS	
DISCUSSION	
LIMITATIONS OF STUDY	
IMPLICATIONS FOR PRACTICE	
RECOMMENDATIONS FOR FURTHER RESEARCH	

Conclusions	
APPENDIX A	66
APPENDIX B	
APPENDIX C	
APPENDIX D	
APPENDIX E	100
APPENDIX F	101
APPENDIX G	
COURSE: INPATIENT TRAUMA BOOTCAMP	
DATE: FEBRUARY 3, 2022	
FACULTY INSTRUCTOR: JEN BATH	
SIMULATION EDUCATION FACILITATOR: AMANDA ANDERSON	
APPENDIX H	105
APPENDIX I	
APPENDIX J	119
APPENDIX K	120
APPENDIX L	

List of Tables & Figures

Table 1 Analysis of Simulation Laboratory Evaluation Tool.	44
Table 2 Analysis of Skills/Performance Evaluation Tools	45
Table 3 Number of UICU Admission Data	46
Table 4 Analysis of UICU Admission Data	47

Impact of a Trauma Boot Camp Using Simulation on Nurse Knowledge, Skills and Confidence, and Frequency of Unplanned Intensive Care Admissions

Chapter One. Introduction

Trauma continues to be a public health problem that impacts healthcare systems (Haley et al., 2017). Trauma patients often have missed or delayed injuries and tend to have higher rates of instability or polytrauma (Tammelin et al., 2016). These factors put trauma patients at high risk for sudden decline requiring unplanned admission to intensive care and higher morbidity and mortality (Frank et al., 2020; Tammelin et al., 2016). As an integral part of the trauma team, nurses provide skilled assessments, critical thinking, and effective communication (Peters et al., 2018). Since nurses are with the patient around the clock, they are vital in recognizing patient deterioration and preventing "failure to rescue" (FTR), a nurse-sensitive indicator (Mushta et al., 2017).

Trauma centers designated through the Commonwealth of Virginia must provide four hours of trauma-specific education annually to all nurses caring for trauma patients (Virginia Department of Health, 2015). Several nationally prepared courses on trauma exist, such as the Emergency Nurse's Association's Trauma Nurse Core Course, but the target audience for these courses is emergency nurses (Ding et al., 2016; Haley et al., 2017). The Society of Trauma Nurses (STN) Advanced Trauma Care for Nurses (ATCN) Course targets all trauma nurses. However, the course focuses primarily on the resuscitation phase immediately following traumatic injury, with little focus on ongoing trauma care (Society of Trauma Nurses, 2020). Trauma Care After Resuscitation (TCAR) is a 2-day course focused on care after resuscitation in the trauma bay. All the courses provided by professional organizations require payment, which is a barrier for most facilities (G. Witt, personal communication, May 27, 2021). A study in England observed that ATCN outcomes for knowledge retention were poor at 3 months post-course completion (Ding et al., 2016). The STN also offers an e-library on multiple trauma topics that is a read-only version and does not include a method to assess knowledge retention (B. Dooley, personal communication, June 30, 2021). Only one study looked at knowledge retention for ATCN (Ding et al., 2016). TCAR does have participants complete a 25-question pre-course and a 50-question post-course final assessment; however, they do not require a passing grade to complete the course (Trauma Care After Resuscitation, 2021). Trauma patients are complex, which requires appropriate education for nurses to meet patient needs, yet there is little research on trauma-focused nursing education for inpatient nurses (Garvey et al., 2016). This study aimed to determine if a trauma boot camp improves knowledge retention, skills, and confidence in nurses caring for trauma patients and reduces trauma UICU admissions.

Problem and Significance

The Institute of Medicine's Committee on the Adequacy of Nurse Staffing in Hospitals and Nursing Homes stated, "Nursing is a critical factor in determining the quality of care in hospitals and the nature of patient outcomes" (Institute of Medicine, 1996, p. 92). Patients with emergency admissions, such as trauma patients, are at higher risk for UICU or upgrades, increasing their mortality (Frost et al., 2009). Patients that suffer an UICU upgrade have higher mortality rates and are considered "clinically significant events" (Mulvey et al., 2019, p. 14). In trauma patients, the most common causes of an UICU admission are respiratory or cardiac decline, older age, and major surgeries during the current admission (Mulvey et al., 2019). Rubano et al.'s (2016) study found that 28.1% of all ICU admissions were an UICU admission with pneumonia being the most common cause for the upgrade to ICU. There is little research on

IMPACT OF A TRAUMA BOOT CAMP

improving trauma nurses' knowledge, skills, and confidence or how it impacts UICU admissions. More research is needed to determine the effect of SBT on trauma nurses' knowledge, skills, and confidence and how that affects UICU admissions.

The study setting was in southwest Virginia, at a Level I Trauma Center that provides trauma services for the Roanoke region, covering a 150-mile catchment area. Trauma patients not requiring ICU admission after the intensive management in the trauma bay go to one of the surgical progressive care units or the medical surgical (Med/Surg) floor. For the last 2 years, the project facility has observed increased admissions or upgrades to the intensive care unit (ICU) among trauma patients on these units due to missed respiratory or neurological decline (P. Boremski, personal communication, April 2, 2020). One of the potential causes could be the high turnover of nurse staffing in those units. The study units have suffered unusually high nurse turnover rates of 58% between two units over the past 18 months (R. Dingus, personal communication, March 1, 2021, B. Hickman, personal communication, March 1, 2021). High turnover of nursing staff, coupled with the ever-changing healthcare environment, makes it difficult for nurses to maintain competencies in trauma patient care (Ding et al., 2016; Haley et al., 2017). Since nurses play a significant role in the quality of care, there is a potential for poor patient outcomes with nursing turnover.

Another potential cause of increased unplanned UICU admissions could be gaps in knowledge of the trauma nurses in inpatient surgical units or an inadequate trauma education program. The remaining nurses on both units have an average of 2 years of experience (R. Dingus, personal communication, March 1, 2021; B. Hickman, personal communication, March 1, 2021). Trauma nurse courses developed in the study setting by the trauma service and the emergency department's educators focus only on the resuscitation phase of trauma care in the trauma bay. Currently, there are no structured orientation courses for inpatient nurses on trauma patient care at this facility or from nursing professional organizations. The American Association of Critical Care Nurses (AACN) online Essentials of Critical Care Orientation (ECCO) is used to orient new nurses in the project setting (B. Dooley, personal communication, March 20, 2020). The AACN course incorporates trauma topics within specific modules and does not separate trauma as a module on its own. Therefore, it is difficult to determine if nurses are getting adequate knowledge and skills from the education for trauma care. Additionally, the pre- and post-test for the AACN course does not include questions related to trauma care (S. Blankenship, personal communication, June 30, 2021).

The project facility does provide some trauma education to staff, including the STN elibrary, online courses related to care of the trauma patient, failure to rescue in-services, and TCAR. However, the STN library is not mandatory, TCAR is offered every other year with limited availability and has been on hold since COVID-19 started, and the staff provided trauma education is not recurrent or structured but in the form of in-services.

Purpose of the Project

This project aimed to determine if a trauma boot camp focused on post-resuscitation care improved the knowledge, skills, and confidence of post-resuscitation trauma care in inpatient progressive care trauma nurses. The course was developed using UICU admission data and the results of a needs assessment on nurses' self-identified and provider-identified gaps in nurse knowledge. The secondary purpose was to investigate whether the boot camp focused on postresuscitation care reduced unplanned trauma ICU admissions. The project ultimately aimed to develop a structured educational course that helps all nurses prepare to care for trauma patients in the inpatient setting. Another expectation was improved patient outcomes with proper nurse training, as evidenced by decreased UICU admissions.

Theoretical Framework

The conceptual framework used for this project was Kolb's experiential learning theory (Kolb, 1981). Kolb felt knowledge occurred through learning experiences and stated, "Learning is a continuous process, and knowledge is created by transforming experience into existing cognitive frameworks, thus changing how a person thinks and behaves" (Lisko & O'Dell, 2010, p. 106). Concepts in Kolb's experiential learning theory include comprehension, apprehension, and transformation (Lisko & O'Dell, 2010). Comprehension happens outside the event through abstract conceptualization after the educational session, working with practical applications, doing technical tasks, or after analyzing the simulation scenarios (Lisko & O'Dell, 2010). Operationalization of comprehension occurred in this project through participating in the simulations, debriefing after each simulation scenario, and through an evaluation where participants reflected on their confidence and satisfaction levels. Apprehension is when the learner takes part in the learning experience, such as a simulation with hands-on practice and learning through self-reflection and feedback on their performance during the debriefing process (Lisko & O'Dell, 2010). This project's operationalization of apprehension occurred when learners participated in simulation scenario-based training and completed the self-reflection on their performance. Transformation occurs when simulation knowledge is applied at the bedside (Lisko & O'Dell, 2010). Operationalization of transformation occurred through the effect on trauma UICU admission rates. The research team anticipated the students would apply what they learned to their bedside practice, leading to improved patient outcomes. Knowledge and skill retention can occur through repeated

practices when caring for similar patients or through repeated training. This study measured transformation through retention processes by knowledge, confidence, and skills evaluation tools immediately after completion of the boot camp and at 30-, 60-, and 90-day post-completion.

Kolb's theory discussed four different learning styles: accommodating, diverging, converging, and assimilating (Lisko & O'Dell, 2010). Hands-on activities such as simulation or skills labs are best for accommodating learners. Those that learn through self-reflection are diverging learners, as seen with apprehension. Learners that prefer comprehension, such as abstract thinking, are converging learners. The final learning style is assimilating; they learn by comprehension and apprehension. The learning methods used in this study were based on a prior needs assessment that surveyed trauma nurses, including those practicing in the proposed study units, on which learning methods they preferred. The survey included several learning methods addressing all four of Kolb's learning styles. The survey results assisted the author in determining the learning styles of potential course participants, so the training could incorporate methods to engage all learners.

Kolb's experiential learning theory discussed a four-stage learning process as well. The stages are concrete experience, reflective observation, abstract conceptualization, and active experimentation (Lisko & O'Dell, 2010). Online education or traditional lectures have limitations in providing experiential learning since they cannot offer a place where the learner can experiment safely, have hands-on experiences, or have opportunities for self-reflection (Garvey, 2016). Simulation scenario-based learning addresses all four stages of the learning process in Kolb's Theory: by creating an environment for openness and discussion, allowing time for reflection, opportunities for understanding the simulation scenario, and a place for experimentation where the learner can provide care while not placing a patient at risk. Therefore, this study used the simulation scenario-based education coupled with a didactic lecture to train nurses taking the Trauma Boot Camp focused on post-resuscitation care and examined the effect of boot camp on knowledge retention, skill level, and confidence levels. The researcher developed simulation education and didactic lectures to provide learning experiences that apply to all four learning stages and the learning styles of comprehension, apprehension, and transformation.

PICOT Questions

In inpatient surgical nurses that care for trauma patients (Population), how does a trauma boot camp focused on post-resuscitation care (Intervention) impact nurses' knowledge, skill, and confidence levels in care of the trauma patient and unit-based unplanned trauma ICU admissions (Outcomes) when comparing pre- and immediately post-knowledge, skills and confidence levels, and knowledge and confidence levels (Comparison) at 30 days, 60 days, and 90 days post-intervention (Time)?

Research Question/Hypothesis

The study aimed to answer the following questions: 1) What effect does a trauma boot camp focused on post-resuscitation care have on the knowledge retention of nurses working in the inpatient surgical units? The null hypothesis is that a trauma boot camp focused on post-resuscitation care will not affect knowledge retention. The alternate hypothesis is that a trauma boot camp focused on post-resuscitation care will affect knowledge retention. 2) What effect does a trauma boot camp focused on post-resuscitation care have on the confidence levels of nurses working in the inpatient surgical units? The null hypothesis is that a trauma boot camp focused on post-resuscitation care have on the confidence levels of nurses working in the inpatient surgical units? The null hypothesis is that a trauma boot camp focused on post-resuscitation care have on the confidence levels of nurses working in the inpatient surgical units? The null hypothesis is that a trauma boot camp focused on post-resuscitation care will not affect the confidence levels of nurses working in the inpatient surgical units?

inpatient surgical units. The alternate hypothesis is that a trauma boot camp focused on postresuscitation care will affect the confidence levels of nurses working in the inpatient surgical units. 3) What effect does a trauma boot camp focused on post-resuscitation care have on the skill performance of nurses working in the inpatient surgical units? The null hypothesis is that a trauma boot camp focused on post-resuscitation care will not affect the skill performance of nurses working in the inpatient surgical units. The alternate hypothesis is that a trauma boot camp focused on post-resuscitation care will affect the skill performance of nurses working in the inpatient surgical units. The alternate hypothesis is that a trauma boot camp focused on post-resuscitation care will affect the skill performance of nurses working in the inpatient surgical units. 4) What effect does a trauma boot camp focused on a postresuscitation care curriculum have on unit-based trauma unplanned ICU admissions? The null hypothesis is that a trauma boot camp focused on a postresuscitation care curriculum have an unit-based trauma unplanned ICU admissions is that a trauma boot camp focused on a post-resuscitation care curriculum will not affect unit-based trauma unplanned ICU admissions. The alternate hypothesis is that a trauma boot camp focused on a post-resuscitation care curriculum will affect unit-based trauma unplanned ICU admissions.

The author hypothesized that a trauma boot camp focused on post-resuscitation care would improve knowledge retention, skill levels, and confidence levels in nurses who attended the boot camp. A second hypothesis was that there would be a reduction in unit-based trauma UICU admissions from pre- to post-trauma boot camp focused on post-resuscitation care intervention.

Definition of Key Terms and Variables

Key terms included knowledge retention, skill level, confidence level, unplanned ICU trauma admissions, or upgrades to the intensive care unit. Knowledge retention was defined as improved test scores from pre- to post-test and maintaining post-test scores at 30, 60, and 90 days. Skill level was defined as improved skills checklist scores from the first to the last

simulation for a total of five simulation scenarios. The confidence level was defined as improved self-reported confidence using a 5-point Likert scale with objective-driven skills from pre- to post-course completion. One confidence evaluation tool was emailed pre-, post-0, 30, 60, and 90 days after completion of the boot camp. The objective-driven skills checklist was emailed pre- and post-boot camp only. A third confidence evaluation from the simulation lab was added to the study measures because of low response rates to the emailed study evaluation tools; it is also an objective-driven skills checklist. Unplanned admission to ICU is "patients admitted to the ICU after initial transfer to the floor and/or patients with an unplanned return to the ICU after an initial ICU discharge," as defined in the American College of Surgeons Trauma Quality Improvement Program National Trauma Data Bank. For example, a patient moved to the stepdown unit from the ICU but needed readmission to the ICU for respiratory distress.

The independent variable was the trauma boot camp focused on post-resuscitation care. The dependent variables were the knowledge evaluation tool scores, skills evaluation tool scores, confidence evaluation tool scores, and UICU admission rates. Other variables analyzed included gender, age, years as a nurse, years as a nurse on the unit, level of education, previous experience with trauma patients, previous trauma education, nursing certifications, age, Injury Severity Score, Trauma Revised Injury Severity Score, ICU length of stay, number of ICU visits, hospital length of stay (HLOS), number of ventilator days, intubated during UICU admit, reason for UICU, and discharge status.

Chapter Two. Literature Review

Simulation has gained popularity in nursing education as it provides a method to teach clinical skills without risk to the patient (Johnson et al., 2014). Traditional lecture formats focus more on memorization than critical thinking skills, so having other ways to teach nurses is necessary. Trauma patients are complex and require appropriate education for nurses to meet their needs, yet there was little research on trauma-focused nursing education for inpatient nurses (Garvey et al., 2016).

Search Strategies

Search engines used to explore the literature were CINAHL, PubMed, Cochrane, and Google scholar. Search terms included trauma, orientation, education, simulation, online, and knowledge retention. Article inclusion criteria included articles with full-text availability or were available through interlibrary loan, written in English or had English translations available, and were written in the past 7 years. Including a few articles older than 5 years was allowed due to the lack of more recent articles on specific topics, such as Kolb's theory.

Exclusion of articles occurred if there was no ability to obtain a full-text copy, a copy in English, or if the publication was older than 7 years, except for the articles previously mentioned. Some articles that met the inclusion criteria were excluded because they did not provide enough information or data on the areas focused on in this study.

Simulation-Based Training (SBT)

Simulation-based training was an effective teaching method that nurses found satisfying and is considered the gold standard in nursing education (Mariani & Doolen, 2016; Yu & Roh, 2017). When comparing lectures to simulations, lectures did not improve long-term knowledge retention better than high-fidelity simulations; however, it was comparable to simulations when measuring immediate knowledge gained (Alluri et al., 2016). One study comparing didactic only to didactic with simulation found that neither instructional technique is superior to the other regarding knowledge retention (Bodine & Miller, 2017). This finding was surprising given the numerous studies that show SBT to be superior to the lecture-only format for knowledge retention. However, Alluri et al.'s (2016) study found no difference in immediate knowledge retention when comparing the two formats. Still, long-term knowledge retention only improved significantly in the SBT group. Incorporating several educational methods such as simulation, debriefs, skills labs, and lectures improve confidence, skills, and knowledge (Abe et al., 2013; Garvey, 2016). This finding is why the researcher used simulations, debriefs, and lectures for the study.

The type of mannequin or level of fidelity is just as important as the educational method in SBT (La Cerra et al., 2019). Compared to mannequin-based methods, a web-based patient design did not improve knowledge and skills as much as the mannequin group (Johnson et al., 2014). While all participants showed significant improvement on the performance checklists and self-reported knowledge, the mannequin group scored significantly higher in self-assessed practice and post-training performance checklists when compared to the web-based patient group (Johnson et al., 2014). When comparing the virtual patient format to the mannequin-based design, the mannequin improved post-test scores better than the virtual method (Liaw et al., 2014). Using high-fidelity patient simulators in simulation-based training had a significantly higher impact on knowledge and performance when compared to low-fidelity mannequins and standardized patients (La Cerra et al., 2019). The type of simulation mannequin used for scenarios affects knowledge and performance as high-fidelity patient simulators have a significantly higher impact on knowledge and performance when compared to low-fidelity mannequins and standardized patients (La Cerra et al., 2019). There was no difference between simulators or standardized patients for participants' satisfaction, self-confidence, and self-efficacy levels (La Cerra et al., 2019). La Cerra et al.'s (2019) findings support the researcher's decision to use a high-fidelity simulator as they have an enhanced impact on knowledge and performance.

Knowledge Retention and SBT

Simulation-based training has proven to have a statistically significant effect on knowledge retention (Jyoti et al., 2021; Kahraman et al., 2019; Karatas & Tuzer, 2019; Kim & Shin, 2016; Said et al., 2021). Said et al.'s (2021) quasi-experimental study looked at 40 nurses in an obstetrics and gynecology department in Egypt. The study aimed to determine the effect of simulation on knowledge, practice, and self-efficacy during the management of eclamptic fits. The knowledge test was 17 questions and included multiple-choice and open-ended questions. The simulation group had statistically significantly higher test scores than the control group, demonstrating that SBT positively impacts knowledge retention (Said et al., 2021). When comparing lectures to SBT, lectures did not result in improved long-term knowledge retention compared to high-fidelity simulations; however, they were comparable to simulation when measuring immediate knowledge gain (Alluri et al., 2016). Simulation-based training has lasting effects on knowledge retention, as students reported continued knowledge retention several weeks after attending SBT (Hustad et al., 2019). Nurses perceive simulation improves knowledge and skills, confirms or corrects knowledge, skills, or actions and provides learning opportunities by watching their peers, reflects on what they did or saw through debriefing (Abelsson et al., 2018).

Students have found that simulations helped mentally prepare them for starting their clinical rotation because simulations bridged the gap from book learning to hands-on learning (Hustad et al., 2019). Students also shared that simulation training made them more aware of the importance of performing a patient assessment and reviewing vital signs. Bedside nurses have reported enjoying simulation experiences and their ability to synthesize new knowledge (Bodine & Miller, 2017; Hustad et al., 2019; Mariani & Doolen, 2016). Simulations were also more motivating for nurses, improving their participation rates and knowledge transfer to bedside practice (Hustad et al., 2019; Liaw et al., 2016). Prior studies support the researcher's decision to use SBT to improve knowledge retention in this study.

Skill Level and SBT

Simulation-based training has proven to improve nurses' skills (Hegland et al., 2017; Parikh et al., 2022). In a Texas study looking at 62 neonatal intensive care nurses and the quality of their chest compressions, simulations and debriefing were used as the educational method in the prospective observational study (Parikh et al., 2022). Chest compression depth and fraction significantly improved from pre-debrief to post-debrief, while chest compression rate and recoil had no difference. Simulation-based training positively impacts the skill levels of the learners participating in the activity (Jyoti et al., 2021; Kim & Shin, 2016). The repeated scenario simulation method improved clinical performance and nontechnical skills, such as teamwork (Abe et al., 2013; Abelsson et al., 2017). These findings support the researcher's decision to use repeated simulations for this study.

Confidence Level and SBT

Simulation improves teamwork and communication, increasing nurses' self-confidence and nurses found it satisfying (Harvey et al., 2019; Hsu et al., 2015; Hustad et al., 2019; Kim & Shin, 2016; Rice et al., 2016). Simulation-based training studies have positively impacted nurses' self-confidence (Kahraman et al., 2019). Simulation-based training has also helped reduce anxiety, increasing confidence (Orsi et al., 2019). In the Parikh et al. (2022) study mentioned above, the NICU nurses demonstrated significantly higher confidence levels in all areas of chest compressions (rate, depth, fraction, and recoil) after the simulation and debriefing. Evidence shows simulation's positive impact on self-confidence, self-efficacy, and perceptions; however, continued research of these variables was recommended (Mariani & Doolen, 2016). These findings and recommendations support the researcher's decision to use SBT to improve confidence levels in this study.

Trauma Unplanned ICU Admissions and SBT

Learner outcomes improved when using medium- to high-fidelity simulations focused on recognizing patient decline, and the simulations lasted 40 minutes or less (Connell et al., 2016; Liaw et al., 2016). Simulations positively impact the learner, patients, and organizational outcomes. Trauma patients were more likely to experience a failure to rescue (FTR) early in their hospital stay, in the ICU, and suffer from a respiratory or cardiac complication. The patients had higher injury burdens, were older, and had suffered blunt trauma (Sharoky et al., 2019). Simulation impacted both knowledge and patient outcomes (Connell et al., 2016; Liaw et al., 2016). Several studies have shown that nurses' recognition of patient deterioration improved when using simulation as a teaching method (Connell et al., 2016; Kelsey & Claus, 2016; Liaw et al., 2016).

Gaps in the literature included simulation-based education for inpatient nurses' caring for trauma patients and how it impacts knowledge, skills, confidence, and UICU admissions. Only two articles specifically addressed simulation and trauma education in this study's format, which supported the need for further research. Multiple education methods can help improve skill attainment, knowledge retention, and confidence. Only one article studied trauma-related education, yet the studies' basic premises helped inform this author's project. This author's Doctor of Nursing Practice project planned to use a repeated simulation format. The project's purpose was to determine if a trauma boot camp focused on post-resuscitation care improved the knowledge, skills, and confidence of post-resuscitation trauma care in inpatient surgical nurses. A secondary purpose was to investigate whether the boot camp focused on post-resuscitation care reduced unplanned trauma ICU admissions.

Chapter Three. Methodology

Study Design

A quasi-experimental one-group study with pre-/post-intervention repeated measures was used in this study.

Study Subjects

This study used convenience sampling because the study uses the "most conveniently available people as participants" (Polit & Beck, 2017, p. 252). The inclusion criteria included registered nurses (RN) hired within the past 3 years working in the inpatient surgical units, caring for trauma patients, and who attended the intervention trauma boot camp. Initially, the study was only for nurses from the two progressive care units. Additional nurses from the surgical Med/Surg unit were added to increase the sample pool due to the low number of available nurses. All RNs with less than 3 years of experience on the unit comprised potential study subjects. Exclusion criteria included RNs with more than 3 years of experience on the unit. At the time of study recruitment, 28 PCU and 11 surgical Med/Surg nurses comprised the study's potential subject pool (B. Dingus, personal communication, March 1, 2021; B. Hickman, personal communication, March 1, 2021). Since this was a pilot study, a power analysis was not needed.

Study Setting

The intervention occurred at the freestanding simulation lab affiliated with the researcher's facility in southwestern Virginia. The trauma department serves approximately 3,000 patients a year. The number of nurses on the units varies based on the level of care. Currently, there is no structured trauma education in the study setting for inpatient nurses using simulation and lecture combined.

Human Subjects Protection

The research team obtained approval from Radford University and the hospital Institutional Review Boards (IRB) before the implementation of the study. The IRB determined that the study was minimal risk and exempt from full IRB review. Written consent was waived due to the nature of the study. Trauma boot camp attendance was mandatory; only participation in the knowledge tests and confidence surveys was voluntary. Information about the research study was emailed to identified participants a week before the course and reviewed by the research team the day of the course (see Appendix B). There was a minimal risk for physical or psychological harm to the participants. Potential participants were informed in writing before participation that they would get no awards and no penalty applied to nurses who decided not to participate in the study. Participants were allowed to drop out of the study at any point during the study period without being penalized. Participants were informed in writing and in person on the day of class that the results of individual tests or surveys are anonymous and would not be used to penalize the participants. The participants were made aware, in writing and in person, on the day of class that the knowledge and confidence evaluation tools would be emailed via REDCap® by the Health Analytics Research Team (HART) team. Once they clicked on the link for REDCap®, they were assigned a random number that only the HART team would be able to access. The research team received data reports using the randomly assigned identification numbers from REDCap®.

Demographic data (see Appendix C), knowledge evaluation data (see Appendix D), and confidence evaluation data (Appendix E & F) were collected and stored using REDCap®, which automatically assigned each student an identification number. REDCap® is a secured, web-based data collection tool. The HART kept a master list of participants in REDCap®. This list ensured

that emails with the pre-, post-0, and 30-60-90-day post-evaluation tools went to those still working for the study units. The research team updated the HART team member when study participants were no longer working on the study units or for the organization to remove them from the study. Only the HART team accessed the REDCap® data. Any dataset used for analysis did not include identifiable human information, such as name, date of birth, and social security number.

The potential benefits of participation included participating in a new and innovative course, focused post-resuscitation education related to trauma patient care, and improving knowledge retention and patient outcomes. The anticipated risks of participation were minimal and included anxiety, discomfort, and stress-related to test-taking and participating in the simulations.

Phase One: Study Procedure

Identification of eligible subjects occurred through staff lists provided by the unit directors of the study units. The list included all RNs' names, the date of hire on the unit, and the date and time they were scheduled to attend the boot camp. The unit directors screened and determined RNs who met the study criteria. An email was sent to subjects informing them of the study purpose and details and inviting them to participate in this study (see Appendix B). Unit directors scheduled the participants to attend the boot camp on dates that worked best for the staff member's schedule. While the boot camp was mandatory as a part of nursing staff education, participation in the knowledge and confidence evaluations was not. Potential subjects were emailed information about the research study a week before the course on December 29, 2021, and the information sheet was reviewed by the researcher again on the day of the boot camp (see Appendix B). Potential subjects were also provided information when they logged into REDCap® for every evaluation and survey (Appendix B), reminding them that participation was voluntary and that they could start or drop out of the study at any time.

Potential subjects were sent a link via REDCap® on December 29, 2021, a week before they attended the course with the demographic survey (see Appendix C), the knowledge (see Appendix D), and confidence evaluation tools (see Appendix E & F). Boot camps were held from January 5, 2022, through February 3, 2022, and the post-knowledge and confidence evaluation tools and course evaluation surveys were emailed to participants during that time. Emails with the 30-day knowledge and confidence evaluation tools were sent to participants from February 5, 2022, through March 7, 2022. The 60-day knowledge and confidence evaluation tools were sent to participants from March 8, 2022, through April 8, 2022. The final 90-day knowledge and confidence evaluation tools were sent to participants from April 9, 2022, through May 9, 2022. After participants completed the post-test at a 90-day follow-up, feedback on the test was provided to participants to enhance their learning via email. The email included the test questions with correct answers, the rationale for the right answer, and any relevant policies or protocols.

Confidence evaluation tools (see Appendix E and F) were used to evaluate the general confidence and the skill-specific confidence relevant to the topics covered after the simulation course. The confidence evaluation tools were emailed via REDCap® before the course and post-0. The NLN confidence evaluation tool was emailed via REDCap® at 30, 60, and 90 days after the boot camp to determine if confidence levels were maintained. In addition, due to low response rates to the study surveys, the simulation laboratory center's (sim lab) course evaluation tool was added to the study dataset after the boot camp was completed (see Appendix G). The sim lab evaluation included confidence level data that the participants filled out on paper

IMPACT OF A TRAUMA BOOT CAMP

anonymously at the end of the day without the researcher present. The data from those evaluations were reported in aggregate to the researcher, per the sim center's procedure for courses taught in the sim lab. The researcher submitted an updated IRB application asking to use the data from the sim lab evaluations to have data to analyze due to the low response rates from REDCap® tests and surveys. The IRB approved the request, and the sim lab sent the raw data directly to the HART team for analysis.

The researcher developed five simulation scenarios with a simulation staff and a simulation expert, which were used for education and evaluation (see Appendix H). Simulation scenarios were developed covering the topics identified through a previous needs assessment and UICU admission data to address gaps in trauma patient care. In addition, when preparing the simulation course, the following items were discussed: triggers for the simulations requiring specific actions, needed supplies, moulaging of manikins, and dates the simulation lab was available. The simulation course was conducted in the inpatient simulation laboratory room, and a separate room was used for debriefing and didactic lectures. Room and course size were determined in compliance with COVID-19 restrictions at the time of course delivery.

The researcher and the sim lab staff used the Simulation Module for Assessment of Resident Targeted Event Responses (SMARTER) approach when designing the simulation scenarios. There are eight steps in the SMARTER approach, with the first being selecting an Accreditation Council for Graduate Medical Education (ACGME) core competency to focus on (Rosen et al., 2008). While ACGME focuses on medical education, the competencies can be applied to other areas such as nursing, especially competencies such as patient care and medical knowledge, which was the focus of the study's simulations. The second step is to develop learning objectives that can be measured and are based on the intervention competencies (Rosen

27

et al., 2008). The researcher developed the learning objectives and skills evaluation tools and had the sim lab staff review them to ensure they met the SMARTER approach. Step three is the clinical context, where the clinical scenarios are developed to meet the learner's objectives (Rosen et al., 2008). The researcher determined the types of patient scenarios needed to meet the learner's objectives, developed the scenarios to meet them, and had the sim lab staff and a sim expert review them for accuracy. Step four is to define the knowledge, skills, and attitudes that determine a good performance (Rosen et al., 2008). As stated above, the researcher developed the scenarios related to the specific traumatic injuries and patient conditions needed to meet the learner objectives. The researcher determined the critical events that would trigger the learner to respond, step five of the SMARTER approach (Rosen et al., 2008). Step six is targeted responses to critical events (Rosen et al., 2008). The researcher and the sim lab staff determined the targeted responses for a critical event based on all available actions. During the scenario, the researcher decided on the targeted response in the moment when a learner had an unexpected answer. An evaluation tool is needed to evaluate the learner's performance in the simulation; therefore, step seven is measurement tools (Rosen et al., 2008). The researcher developed the skills evaluation tools and reviewed them with the sim lab staff and a trauma nursing sim lab expert. The eighth and final step in the SMARTER approach is the scenario script (Rosen et al., 2008). The script describes how the simulation events will unfold, including the patient information, critical events, and targeted responses. The script was developed by the researcher and reviewed by the sim lab staff and a trauma nursing sim lab expert.

Data for UICU admissions (see Appendix I) were obtained from the trauma registry. A query of the trauma registry was done for all trauma patients admitted to the study units during the 90 days after the boot camp was delivered. Another query of the trauma registry was done for

all trauma patients admitted to the study units the 90 days before the study started for comparison data. The Trauma Performance Improvement Coordinator ran the query and sent the data to the research team once the 90-day post-boot camp period had passed.

The International Nursing Association for Clinical Simulation and Learning Standards for Simulation

The International Nursing Association for Clinical Simulation and Learning (INACSL) Standards were followed by the researcher and the sim lab staff in developing, implementing, and evaluating the boot camp simulation scenarios. The first INACSL standard is professional development and focuses on the role of the simulationist. The first standard includes simulator use of needs assessments to determine the educational needs of learners, take part in continuing professional development activities, such as attending conferences and following simulation standards from professional organizations, and staying current on simulation literature (Hallmark et al., 2021). A needs assessment was done before this study by the researcher that was shared with the sim lab staff. The sim lab staff member followed the INACSL and Healthcare Simulation Standards of Best Practices (HSSOBP) standards and was a Certified Healthcare Simulation Educator (CHSE).

The INACSL standard for pre-briefing includes planning and pre-briefing to ensure that learners are informed of the sim lab process, how the manikin works, the location of supplies in the sim room, what the expectations for the scenario are, and to ensure them that they are in a safe place to learn (McDermott et al., 2021). The design standard for the INACSL was met when the sim lab staff and the researcher met during the project planning phase to discuss the project and learner objectives and determine what type of simulation fidelity, room, and equipment would be needed (Watts et al., 2021). The INACSL states that the facilitation of simulations requires special skills and should follow the HSSOBP (Persico et al., 2021). This standard was met using a CHSE who followed the INACSL and HSSOBP standards, helped determine the cues for the simulation delivery to meet the learner objectives, and facilitated the debriefs. The debrief standard for the INACSL was met by planning the debrief method ahead of time, using a structured debrief method, determining that the sim lab staff would facilitate the debriefs, and using the debriefs to promote self and team reflections on what was and was not known before and after the simulation, and what the learners did well and what they would do differently (Decker et al., 2021). Operations is another INACSL standard. It was met through strategic planning to meet the objectives and goals of the simulation, determining which sim staff members were best suited to help plan and facilitate the simulations, determining which sim lab space best suits the needs of the scenarios, and ensuring that the sim lab policies and protocols followed along with the INACSL standards (Charnetski & Jarvill, 2021). Establishing learner outcomes and objectives through the project curriculum, picking the simulation modality and fidelity to best meet the objectives, understanding the expectations of the simulation, and aligning with the HSSOBP is another INACSL standard met by the sim lab for this project (Miller et al., 2021). The researcher shared the learner and study objectives with the sim lab staff, who provided feedback. They also provided feedback on the developed scenarios and cues to help make the scenarios meet the learner's objectives. They also chose the sim room and agreed that high fidelity was the best option. The INACSL includes professional integrity as a standard (Bowler et al., 2021). This standard was met by following the simulation practice standards set forth by the INACSL and HSSOBP, providing a safe learning environment, and reassuring learners that confidentiality was maintained (Bowler et al., 2021). The INACSL standard of simulation-enhanced interprofessional education was met using trained confederates to play the

interprofessional roles, making this an interprofessional education event (Rossler et al., 2021). Future boot camps or similar courses could be expanded to include other disciplines such as respiratory therapy, physicians, nurse practitioners, or pharmacists. The final INACSL standard is the evaluation of learning and performance that includes determining the method of learner evaluation, which could be formative, summative, or high stakes (McMahon et al., 2021). This standard was met by selecting high-stakes evaluation since the study would be determining skill gaps, be based on the learner objectives, have a predetermined endpoint, use a formally trained evaluator, use a previously used evaluation tool/method, and use one objective observer to rate the simulations through direct observation (McMahon et al., 2021).

Phase II: Intervention

On the day of the study, participants received the simulation scenario-based training course on trauma patient care (i.e., boot camp intervention). The trauma boot camp focused on post-resuscitation care objectives were to 1) recognize deterioration in a trauma patient, 2) perform relevant assessments on the deteriorating trauma patient, 3) intervene appropriately for a deteriorating trauma patient based on assessment findings, and 4) describe the bladder management protocol and how it differs for spinal cord injury patients in comparison to other trauma populations. The course started with a simulation on one of the following areas of focus: troubleshooting a chest tube issue, identifying and treating autonomic dysreflexia in a spinal cord injury, assessing respiratory status in a patient with rib fractures, and correctly using the incentive spirometer to aid in that assessment, performing the bladder management protocol, performing a neuro exam on a traumatic brain injury patient that has a declining mental status, and communicating patient issues to team members effectively. The course had four to five participants in each class due to the simulation lab's COVID-19 restrictions.

The trauma boot camp focused on post-resuscitation care and consisted of three parts: simulation session, debriefing session, and lecture, provided in that order. Simulation sessions (see Appendix E) were performed as a group with the participants acting as the patient's nurse, lasted 5-10 minutes, and were followed by a 5–10-minute debrief. The research team led the simulations while the simulation lab staff facilitated the scenarios and conducted the debriefs. The simulations were scored by an objective simulation and trauma expert, not the researcher or the sim lab staff. The model used for debriefing was the Plus-Delta model, which is used in TeamSTEPPS®, which the researcher and sim lab staff are trained in using for debriefing simulations. Participants discussed what went well (the Plus) and what could have been done better (the Delta) (Agency for Healthcare Research and Quality, 2019). This model has been used by the research team and sim lab staff frequently. During the simulation session, the researcher was in the control room and provided any needed changes to the simulation in response to the subjects' actions that were not addressed in the scenario details. The sim lab staff led the debrief sessions with the researcher in the room. Education related to the simulation occurred as part of the debrief by the sim lab staff and researcher when participants had questions and after they had completed debrief to address clinical issues identified during the simulation.

After the debriefing session, the research team gave a 20–30-minute lecture covering the topics discussed in the preceding simulation scenario. The researcher developed the lecture, focusing on the key points the learners needed to know for trauma patient care using current evidence-based practices. The content of the lectures included caring for patients with rib fractures, caring for and troubleshooting chest tubes, caring for traumatic brain injury patients, performing a neurological exam, and caring for the spinal cord injury patient,

including recognizing and preventing autonomic dysreflexia and how to use the bladder management protocol. In total, the entire boot camp was 4 hours long.

The day continued with four simulation sessions, followed by debriefs and focused lectures relevant to the preceding simulation scenarios. Debrief and lectures were provided each time a simulation scenario session was completed. The lectures covered one of the situations from the previous simulation. The day ended with one final simulation scenario that tied in with the topics covered throughout the day. One final debrief was done as a group before the course concluded. No lecture was provided for the last scenario. The sim lab staff had participants fill out a course evaluation survey per their protocol that the researcher was not present for.

While learners were participating in the simulation scenario, an objective evaluator observed and scored each simulation using a skill evaluation tool specific to each scenario (see Appendix H). Scoring of skill/performance was done as a group, as the simulation was performed as a group. The participants completed all five scenarios, and all five were observed and scored. The skill evaluation tools were placed in an envelope by the objective scorer. The envelope was sealed shut with tape, and the tape was signed by the observer with their name and date to ensure the integrity of the data. The sealed envelopes were then handed to the researcher, who locked them in a cabinet in a locked office that only the researcher had access to until all the simulation groups were completed. Once completed, all the sealed envelopes were handed directly to the HART team member, who would analyze the skills checklist data for the researcher. The HART team then entered the data in REDCap® and correlated it to the participants' evaluation scores and survey results.

Another person was added to the research team after initial IRB approval as the lead

researcher was exposed to COVID-19. To prevent the course from being delayed, one of the researcher's project committee members was added as faculty to the course so they could teach and lead the simulations if the lead researcher tested positive for COVID-19. In the end, the backup instructor was not needed, and the course proceeded with the lead researcher as planned.

Phase III: Post-Intervention

After course completion, the participants were emailed another link via REDCap® for the post-confidence evaluation tools (see Appendix E and F), post-knowledge evaluation tool (see Appendix D), and course evaluation survey (see Appendix F). At 30, 60, and 90 days after course completion, links were emailed to participants via REDCap® with knowledge evaluation tools (see Appendix D) and confidence evaluation tools (see Appendix E). Email reminders were sent to participants weekly until 3 weeks after the final 90-day link was sent.

Due to the low response rate from participants on the knowledge evaluation tools, confidence evaluation tools, and course evaluation survey, the research team sought IRB approval to use the simulation lab's course evaluation data. Approval was given, and the raw and aggregate course evaluation data from the simulation lab were sent directly to the HART team member.

Study Instruments

Demographic Data Survey

The demographic data survey is an eight-question tool (see Appendix C) developed by the study researchers to collect participants' demographic characteristics and trauma patient care experiences. It included gender, age, highest nursing degree, attainment of nursing certificate relevant to trauma patient care, years of experience as a nurse, years of experience as a nurse on the current unit, previous experience in trauma patient care, and years of previous trauma patient care experiences. Gender, previous trauma education, and previous experience with trauma patients used nominal data. Gender options included male, female, other, and prefer not to answer. The variable to report a previous trauma education and experience with trauma patient care were answered as yes/no option. Age, years as a nurse, years as a nurse on the unit, and years of previous trauma experience were reported as raw data, using the closest whole number. The level of education included diplomas, associate's, bachelor's, and master's degrees, and like gender, were coded as nominal data and were reported based on the highest degree obtained. Certifications obtained through professional organizations included Critical Care Registered Nurse, Progressive Care Certified Nurse, Trauma Certified Registered Nurse, and others with the option to choose all answer options that applied. It used yes/no questions and was coded as nominal data.

Knowledge Evaluation Tool

The knowledge evaluation tool (see Appendix D) was developed by the study researcher and consisted of a total of 10 questions. The level of measurement for the test scores was ratio and used the raw numbers with no rounding. REDCap® scored the test. The pre- and post-tests for knowledge included the same questions; however, the order of questions and answers was randomly organized to minimize memorization of the questions and answers. Scores were presented as percentages correct, ranging from 0 to 100, based on the number of questions answered correctly. The closer to 100 a participant scored, the better their knowledge retention was. Scores closer to 0 indicated a lack of knowledge retention. Questions not answered were thrown out, and the score was calculated based on the number of correct answers out of the total number of questions answered so as not to skew the results. A nursing trauma expert reviewed the knowledge evaluation tool for content validity. Psychometric testing was not conducted for the knowledge assessment tool.

Confidence Evaluation Tools

Student Satisfaction and Self-Confidence in Learning. The Student Satisfaction and Self-Confidence in Learning (see Appendix E), provided by the National League of Nursing (NLN) website, is a 13-item instrument consisting of five questions for satisfaction and eight for self-confidence measures (National League of Nursing, 2021a). Each item was scored using a 5-point Likert scale (1 = strongly disagree, 2 = disagree, 3 = undecided, 4 = agree, 5 = strongly agree). Therefore, scores for confidence levels ranged from one to five, with the lowest possible score of 13 and the highest possible score of 65. The higher the score is for confidence levels, the more confident the participant is with caring for those areas of focus. This instrument was reported to have reliability tested using Cronbach's Alpha, with a satisfaction score of 0.84 and confidence of 0.87 (National League of Nursing, 2021a). Permission to use the tool was not required per the National League of Nursing website if the tool was used for non-commercial use and the source was cited correctly when published (National League of Nursing, 2021b). Once participants completed the evaluation tool, REDCap® automatically scored the answers for confidence evaluation.

Trauma Specific Confidence Evaluation Tool. This confidence evaluation tool was developed by the researcher and was based on prior tools used by the research in other traumarelated SBT classes. Self-reported confidence levels related to six specific skills of traumatic patient care were also measured, but only before and after the simulation-based training course. Topics/skills asked for confidence levels in six areas, including troubleshooting chest tubes, using the bladder management protocol, performing a neurological exam, teaching incentive spirometry, EPIC documentation, and team communication (see the latter half part of Appendix F). Self-confidence levels for the specific-skills confidence levels were measured using a 5-point Likert scale. Therefore, scores for specific-skill confidence levels ranged from one to five, with the lowest possible score of six and the highest possible score of 30. Psychometric testing was not conducted for the Trauma Specific Confidence Evaluation Tool.

Simulation Laboratory Course Evaluation Tool. The sim lab course evaluation tool (see Appendix G) was developed by the sim lab's director and one of the sim lab team members. The sim lab course evaluation tool is course objective driven and included participants' ability to recognize deterioration in a trauma patient, ability to perform relevant assessments on the deteriorating trauma patient, ability to intervene appropriately for a deteriorating trauma patient based on assessment findings, and ability to describe the bladder management protocol and how it differs for spinal cord injury patients. Self-confidence levels for the sim lab confidence levels were measured using a 5-point Likert scale (1 = very low, 2 = low, 3 = moderate, 4 = high, 5 = very high). Therefore, scores for specific-skill confidence levels ranged from one to five, with the lowest possible score of four and the highest possible score of 20. Psychometric testing was not conducted for the Simulation Laboratory Course Evaluation Tool.

Skill Performance Evaluation Tool

The skill performance evaluation tools (see Appendix H) included the scenario or case information with triggers and targeted clinical response skill checklists. They scored one point whenever the group participating in each scenario hit the targeted clinical response/skill. The skills evaluation tools were scored as percentages of the number correct out of the total number of points. Missed checklist items were reviewed to determine if one area was overlooked more often than another. Psychometric testing was not conducted for the Skill Performance Evaluation Tools.

UICU Admission Trauma Registry Data

Unplanned ICU admissions or upgrades to ICU (see Appendix I) used percentages and types. The trauma registry data included age, Injury Severity Score (ISS), Trauma Revised Injury Severity Score (TRISS), ICU length of stay (LOS), number of ICU visits, hospital length of stay (HLOS), number of ventilator days, UICU intubation, the reason for UICU, and discharge status. The UICU admission Trauma Registry Data was used to examine the unplanned ICU admission rates and other related outcomes among trauma patients admitted during study periods.

Data Collection and Data Security

Data collection for the knowledge, confidence, and skills evaluation tools and the demographic and course evaluation surveys started on January 5, 2022, and ended on May 25, 2022. Unplanned ICU admission data collection periods were October 6, 2021, to January 4, 2022, for the pre-intervention period, and February 4, 2022, to May 5, 2022, for the post-intervention period. The Trauma Performance Improvement Coordinator ran the query and stored the data securely on the research study shared drive that only the research team and HART could access. The trauma patients' unplanned ICU admission data (see Appendix I) was stored in a shared drive housed in the hospital system's mainframe. The study shared drive was password-protected and only accessible by the research team and HART to ensure the data was secure.

Data collection was done via REDCap® for all five pre-post knowledge evaluation tools and pre-post confidence evaluation tools. The database, including knowledge evaluation tools (see Appendix D), confidence evaluation tools (see Appendix E and F), the demographic survey, and the course evaluation survey (see Appendix F), were built and stored in REDCap® by the HART team. REDCap® also was used to track the skills evaluation tool scores and store them. The HART team was given a list of the participants' names and emails, units, and the date and time they attended the boot camp. The HART team entered all information into REDCap®. They also sent out the email links with the evaluation tools and surveys before the boot camp started, after its completion, and at the 30-, 60-, and 90-day intervals based on the days the participants were scheduled to attend the class. The HART team also entered all the skills evaluation tools data once they received the scoring sheets from the research team. They then merged the simulation scores to the knowledge and confidence evaluation tools, so all data points were grouped (M. Salamoun, personal communication, July 19, 2021). Data was kept for the length of time designated by the study facility/organization. REDCap® also kept the list of participants sent to the research team by the unit directors.

REDCap® is a secure, web-based data collection tool that is password-protected. Only HART had access to the original study database to protect the data and ensure participant confidentiality, including identifiable information in RedCap®. REDCap® automatically assigned subjects an identification number the first time they signed into REDCap®, and data was de-identified. The research team could not access the REDCap® database, and data were only reported using the de-identified identification number assigned to the participant. Therefore, the research team was unaware of whose tests and evaluations they were viewing (M. Salamoun, personal communication, July 19, 2021). REDCap® automatically assigned the study identification number for the same participant, so the pre-post knowledge and confidence evaluation tools scores and evaluation surveys were grouped with the same subject. Using REDCap® ensured that the data was secured and collected at the same time every time to address fidelity. Subjects were only identified by a number, protecting their confidentiality from the researcher.

Evaluation Plan

Variables

The independent variable was the trauma boot camp focused on post-resuscitation care. The dependent variables were the knowledge evaluation tool scores (see Appendix D), skill evaluation tool (see Appendix H), confidence evaluation tool scores (see Appendix E and F), and UICU admissions (see Appendix I). In addition to the independent and dependent variables, several other variables were collected and analyzed. Those variables (see Appendix C and I) included gender, age, years as a nurse, years as a nurse on the unit, education level, certifications, previous trauma experience, previous trauma education, unit characteristics, and UICU characteristics.

Operational Definitions

Knowledge retention was defined by improved test scores (see Appendix D) from preto post-test and maintaining those post-test scores at 30, 60, and 90 days. Skill was defined as the percentage of correct hit points as a group in each scenario. The improvement of skill performance was defined when the percentage of correct hit points as a group was increased from the first simulation to the last one during the simulation course (see Appendix H). Confidence retention was defined when having improved self-reported confidence in learning levels (see Appendix E and F) from pre- to post-course and maintaining those postintervention scores at 30, 60, and 90 days post-course. An unexpected admission or upgrade to ICU was referred to when a trauma patient had a status decline requiring a higher level of care than anticipated, as defined by the American College of Surgeon Trauma Quality Improvement Program National Trauma Data Bank. For example, when a trauma patient is readmitted to the ICU with respiratory distress, it is considered an unplanned ICU admission. Improvement of UICU admission is defined by a reduction in the number of UICU trauma admissions related to failure to rescue by nursing from 90 days pre-intervention to 90 days post-intervention.

Data Management for Analysis

The data cleaning process occurred before analysis by the research team. The knowledge test score calculations included the number right out of the number answered, assuming that the subject missed the question if it was left unanswered. The score was calculated from total correct answers out of total answered, instead of all questions, to ensure an accurate depiction of knowledge retention. Similarly, confidence evaluation tool questions not answered were also left out, with the analysis done on only the answered items. For confidence evaluation tools, when items were left blank either in the pre- or post-test, the questions/items were excluded for the analysis, so the remaining data was not skewed for pre-post comparison analysis. Outliers were removed for further analysis to understand the results better.

Statistical Analysis

Descriptive Statistic Analysis

Frequency and percentages were used to analyze the nominal and categorical variables such as gender, highest education degree, certificate obtained, and the reason for UICU admission. Mean and standard deviations, along with range, were used to analyze the ordinal or the continuous/ratio variables such as age, test scores for knowledge, confidence, and skill.

Inferential Statistic Analysis

Aim One (Knowledge). Paired t-test was used to evaluate if there was a difference in knowledge score before and after the boot camp and to determine the effect of the trauma boot camp on knowledge. In addition, repeated measures (RM)-ANOVA was used to measure knowledge retention throughout the study period to evaluate if there was a difference in

knowledge scores among datasets at baseline, post-0, 30, 60, and 90 days. When a discrepancy exists with a p-value of 0.05, a post-hoc paired comparison was used between pre-test and post-test datasets to identify where the difference exists among the five dataset groups.

Aim Two (Confidence). The paired t-test was used to determine if there was a difference in confidence scores before and after the training for two confidence surveys (the NLNs and the researcher's). Confidence was also measured using the NLN survey at baseline, post-0, 30, 60, and 90 days, so RM-ANOVA was used to evaluate if there was a difference in confidence amongst the datasets at baseline, post-0, 30, 60, and 90 days. When a difference exists with a pvalue of 0.05, a post-hoc paired comparison was used between the pre-test and the four post-test datasets to identify where the difference exists among the five dataset groups. The Wilcoxon Signed Rank Test was used to evaluate if there was a difference in confidence scores of the sim lab's confidence evaluation tool from pre- to post-boot camp.

Aim Three (Skill). Wilcoxon Signed Rank Test was used to evaluate if there was a difference in percentage score of skill performance between the first and final simulations to determine the effect of trauma training courses on skill performance.

Aim Four (Unplanned ICU Admission). UICU data was compared 90 days preintervention and 90 days post-intervention. Fisher's Exact Test was used to evaluate if there was a difference in the number of UICU admissions pre-to-post-intervention and for categorical variables when comparing UICU admission characteristics. The Wilcoxon Two-Sample test was used to compare numerical variables for UICU admission characteristics between pre- and postintervention UICU admissions.

Chapter Four: Results

Of the 20 participants, only four participated in the research study. One participant completed all five knowledge and confidence evaluation tools and the demographic and course evaluation surveys. However, they chose not to be included in the study. The four participants that agreed to participate in the study completed the demographic survey. Of the four, only one completed four of the five knowledge and confidence evaluation tools and the final course evaluation survey. Three completed the pre- and post-knowledge and confidence evaluation tools. Two participants completed pre-, post-, and 30-day knowledge and confidence evaluation tools. None of the participants completed the 60-day knowledge and confidence evaluation tools. Due to the lack of response, there was insufficient data to run a statistical analysis on the knowledge and the NLN and researcher's confidence evaluation tools or the demographic surveys sent via REDCap®.

All 20 participants completed the sim lab course evaluation; therefore, the data were analyzed using the Wilcoxon Signed-Rank Test using R Studio (2022.02.3 492, Boston, MA). Overall, there was a statistically significant improvement in confidence in all four areas evaluated by the sim lab confidence evaluation (see Table 1).

Table 1

Participant's ability to:	Pre-Boot Camp Median	Post-Boot Camp Median	P-value
Recognize deterioration in a trauma patient	3	4	<i>p</i> = 0.0001
Perform relevant assessments on the deteriorating trauma patient	3	4	<i>p</i> = 0.0002
Intervene appropriately for a deteriorating trauma patient	3	4	<i>p</i> = 0.0003
Describe the bladder management protocol & how it differs for spinal cord injury patients	3	5	<i>p</i> = 0.0001

Analysis of Sim Lab Evaluation Tool

The skills/performance evaluation tool scores did not significantly improve when comparing the first simulation to the final simulation (p = 0.6721). Overall, five of the seven groups tested had some improvement (median % change) from the first to the last simulation, while the other two groups had a decline in scores (see Table 2). When comparing the combined skills scores for all groups, the first simulation score had a percent median score of 70.59% versus the last simulation score, which has a percent median of 81.48%.

Table 2

Analysis of Skills/Performance Evaluation Tool

Sim Group	% Change from 1st to last Sim
Α	11.5%
В	16.8%
С	8.7%
D	10.9%
E	10.9%
F	-12.0%
G	-12.6%

Sim Lab 1st Score % Median = 70.59% Sim Lab Last Score % Median = 81.48% p-value = 0.6721

The sim lab evaluation tool also collected comments from participants. Several

participants commented that the boot camp is great for new nurses and should be done sometime

during or shortly after orientation.

"Great for new grad training."

"I think the sim was helpful and should be done within a couple of months of

coming off orientation."

Participants also mentioned how beneficial they found the education and the format used for the class.

"Loved that we did a scenario then debriefed."

"I really appreciated the chest tube education."

One of the unit directors also gave feedback about how well her staff enjoyed the class.

Several nurses shared with her that they found the experience helpful, engaging, and informative

(K. Reese, personal communication, February 4, 2022).

Fisher's Exact Test analyzed the total number of UICU admission events pre- to postintervention. There was a total N of 331 trauma admissions to the study units in the preintervention phase and 174 in the post-intervention phase. Of the total trauma admissions, a higher frequency of UICU admissions occurred in the post-intervention time period (pre = 4.8%vs. post = 10.9%, p = 0.0155; see Table 3).

Table 3

Number of UICU Admissions

	Pre (n , %)	Post (n, %)
UICU No	315 (95.2)	155 (89.1)
UICU Yes	16 (4.8)	19 (10.9)

p-value = 0.0155

There were no statistically significant differences when comparing pre- to post-boot camp UICU admission data on the following: age, ISS, TRISS, ICU LOS, number of ICU visits, HLOS, number of ventilator days, intubation during UICU admission, and reason for UICU admission (see Table 4). The pre-boot camp UICU admission data did not include cardiac arrest events (n = 0, 0%); however, the post-boot camp reason for admission included four patients that were upgraded due to cardiac arrest (21.1%). Respiratory compromise accounted for 50.0% in the pre-boot camp group, but only 36.8% in the post-boot camp group.

Table 4

Analysis of UICU Admissions

	Pre	Post	p-value
Age	75.5 (16.5)	71 (18)	0.3600
ISS*	9.5 (10.5)	9 (17)	0.5506
TRISS**	0.97 (0.02)	0.97 (0.01)	0.1605
ICU LOS***	6.5 (11.5)	9 (13)	0.3101
ICU Visits	1 (1)	1 (1)	0.3023
HLOS ⁺	16.5 (17)	18 (23)	0.2346
Ventilator Days	3 (4)	2 (17)	0.4938
Discharge Status			0.6772
Alive	12 (75.0%)	16 (84.2%)	
Dead	4 (25.0%)	3 (15.8%)	
UICU Intubation			0.7267
No	11 (68.8%)	11 (57.9%)	
Yes	5 (31.3%)	8 (42.1%)	
UICU Reason			0.1901
Cardiac Arrest	0 (0.0%)	4 (21.1%)	
Respiratory	8 (50.0%)	7 (36.8%)	
Other	8 (50.0%)	8 (42.1%)	

Median (IQR) – Numeric Variables (Wilcoxon Two-Sample Test)

(%) – Categorical Variable (Fisher's Exact Test)

*ISS- Injury Severity Score

**TRISS- Trauma Revised Injury Severity Score

***ICU LOS-Intensive Care Unit Length of Stay

+HLOS-Hospital Length of Stay

Chapter Five: Conclusions

Discussion

This study demonstrated the positive effect of the study design on improving nurses' confidence in caring for patients with traumatic injuries. Therefore, the alternate hypothesis was confirmed that a trauma boot camp focused on post-resuscitation care will affect the confidence levels of nurses working in inpatient surgical units. This finding supports previous findings that SBT positively affects confidence levels in nurses (Harvey et al., 2019; Hsu et al., 2015; Hustad et al., 2019; Kim & Shin, 2016; Rice et al., 2016). The boot camp was focused on newer nurses, who may be more anxious and less confident. Confidence is essential for nurses, as low confidence levels have been linked to delays in care and the inability to intervene when a patient deteriorates (Crowe et al., 2018). Improving nurses' confidence may reduce FTR events by increasing nurses' ability to think critically and enhance their clinical judgment and decision-making (Guerrero et al., 2022). This study is the first to explore the impact of a post-resuscitation trauma specific boot camp on confidence levels in new trauma.

When comparing the first scenario to the final scenario, there was no improvement in skills. The lack of improvement proves the null hypothesis that a trauma boot camp focused on post-resuscitation care will not affect the skill level of nurses working in the inpatient surgical units. However, five of the seven groups did demonstrate improvement, whereas two groups had a decline. This finding was not expected as much of the literature shows the positive impact SBT has on improving nurses' skill competence (Abe et al., 2013; Abelsson et al., 2017; Hegland et al., 2017; Jyoti et al., 2021; Kim & Shin, 2016; Parikh et al., 2022). The study design was different than the usual SBT used in prior comparison studies. This study had the simulations and debriefs before the lectures, which is not a standard format for SBT (Garvey et al., 2016; Rice et

al., 2016), whereas the usual SBT format is a lecture followed by simulations and debriefs (Abe et al., 2013; Bodine & Miller, 2017; Connell et al., 2016). This study may not have improved skills because the first and last simulations differed. The first simulation case was a rib fracture scenario. In contrast, the final simulation case pulled together everything from the boot camp in one final scenario. These limitations can be addressed in the future by having the first and last simulation measure the same items for consistency.

A validated measurement tool is highly recommended when measuring skill performance (Chang et al., 2018). According to the American Heart Association, developing an objective measurement tool for skill performance and implementing it can be a logistical nightmare (Chang et al., 2018). The measurement tool's validity is crucial but challenging to obtain since tools vary based on population, focus, content, and so on, and the validation process is lengthy (Chang et al., 2018). The tools used in this study were structured using evidence-based SMARTER methodology and content validated by a trauma nursing expert; however, lack of formal tool psychometric testing may account for the lack of significant findings.

A potentially significant confounding variable that may have impacted skill performance was that the simulation groups were of a mixed composition, with some groups being comprised of staff members from the same study unit and others being from all three study units. Team skill performance may have been higher in simulation groups comprised of nurses who work together on a daily basis. A second confounding variable is the sample included nurses with less than 3 years of nursing experience; however, variation in skill level within groups may have made an impact. Some groups had only 6 months' experience, and others had more than 2 or 3 years' experience. The groups with nurses with more experience may have scored higher as the more experienced nurses would be more confident in their knowledge and skills and have higher levels of critical thinking compared to their less experienced counterparts. Corelating simulation group characteristics with nurse trauma nurse team performance provides direction for future research.

There was a significant increase in UICU admission rates from pre- to post-trauma boot camp, thus confirming the alternate hypothesis that a trauma boot camp focused on a postresuscitation care will affect unit-based trauma unplanned ICU admissions. The finding was surprising since simulation has been proven to increase nurses' ability to recognize and rescue a deteriorating patient (Connell et al., 2016; Kelsey & Claus, 2016; Liaw et al., 2016). Therefore, the researcher expected a decline in UICU admissions from pre- to post-trauma boot camp. Several factors may have influenced these unexpected findings.

Respiratory issues are the most common cause of UICU admission in trauma patients (Duverseau et al., 2019). Respiratory issues related to pneumonia and adult respiratory distress syndrome, cardiovascular complications, and sepsis are risk factors for having an FTR event (Roussas et al., 2020). In geriatric trauma patients, frailty triples their risk of FTR and alone can cause FTR (Roussas et al., 2020). In trauma patients, older age and respiratory issues were significant indicators of FTR (Smith et al., 2019). Respiratory issues accounted for 50% of the pre-boot camp group's reason for UICU admission but only 36.8% in the post-boot camp group, which trended towards significance. The post-boot camp group also had patients that experienced cardiac arrest (21.1%), while the pre-boot camp group did not, which may account for the higher-than-expected UICU admission rates in the post-boot camp group. The course content did not cover cardiac events, only respiratory and neurological events, which may account for the increase in UICU admissions in the post-boot camp group.

The lecture content focused on specific areas related to trauma care but did not include all of the 10 signs of vitality content. The 10 signs of vitality is an approach to early recognition of

patient deterioration, which can help prevent UICU admissions (Vandergrift et al., 2021). The study facility uses the 10 signs of vitality model for recognition of early clinical decline and includes this in new hire nurse orientation. Adding the additional content that focuses on the entire 10 signs of vitality and the primary causes of FTR for future trauma boot camps may help address these issues.

Johnston et al. (2015) found that as staffing levels decreased, FTR rates increased, but as hospital volumes decreased, FTR rates did as well. Staffing turnover has been an issue at the study facility, which may contribute to increased FTR rates. Comparing the staffing turnover rates during the pre-intervention phase to the post-intervention phase may support the increased FTR rates if turnover had increased during that time. Comparing hospital volume during those same periods may also support the rise in FTR numbers if the volume had increased from pre- to post-intervention.

Limitations of Study

This study had several limitations, the main one being that it was unable to determine the effects of the boot camp on knowledge due to low response rates by participants. Lack of response may be due to survey fatigue or a lack of free time during the workday to answer surveys (Anusiewicz et al., 2021). Survey fatigue is "overexposure to the survey process, in which people become overwhelmed by the number of surveys they encounter in daily life and that they thus become fatigued" (Karlberg, 2015, p. 2). Post-COVID-19 survey response rates are significantly less than pre-COVID-19 (de Koning et al., 2021). Most surveys had an average of 25 questions, were multiple-choice, and were sent by email to participants. de Koning et al. (2021) found that the increase in surveys during the COVID-19 period led to increased survey fatigue, causing reduced response rates and data collection quality. Survey fatigue leads to a lack

of participation or participants not completing or withdrawing from the study before it is over (Field, 2020). Being invited to participate in multiple surveys, such as in this study, can also lead to participant dropout (Field, 2020). This study had five survey links sent out with 23 questions on the knowledge and confidence evaluation tools, not counting the demographic or course evaluation surveys. This may explain the low response rates and the attrition of the four participants over time. Work time, and changes in workload, especially post-COVID-19, have led to less free time at work to complete surveys, and staff may see participating in a survey off the clock as a disturbance in their work/life balance (Anusiewicz, 2021; Field, 2020). As noted earlier, staffing turnover has been an issue the study nursing units are dealing with, which may mean a heavier workload for the nurses and may account for the lack of response rates for this study.

Since it was a pilot study, the sample size was small, and single center setting during a pandemic limits generalizability. The study design employed a convenience sample, so randomization of participants did not occur. Convenience samples make it difficult to generalize the findings to the population as a whole (Polit, 2010).

Finally, the course was a requirement for participants instead of voluntary, which may bias results. Participants were able to opt out of the tests and surveys to help reduce the potential for bias. There was also a low response rate related to the tests, surveys, and course evaluation sent out via REDCap®, making it difficult to determine the actual effectiveness of this study. **Implications for Practice**

This study researched a different teaching format using SBT. Instead of the traditional lecture, simulation, then debrief, this study switched it up and started with a simulation followed by debriefing, then lecture. The boot camp repeated this format for four rounds with one final

simulation. Participants shared they liked this format as it made them more aware of what they thought they knew but did not. The boot camp increased new nurses' confidence levels when caring for trauma patients; however, it did not show improvements in knowledge, skill level, or UICU admissions. This format can be replicated and applied in other areas of nursing to help new nurses transition into their practice. The author recommends offering the course after orientation but within the first 6 months of hire, if possible, based on participant feedback.

Recommendations for Further Research

Further research is needed using this study's design to train inpatient nurses caring for trauma patients. The researcher recommends using the same scenario for the first and final scenarios to demonstrate skill attainment better. Adding the knowledge evaluation tool on paper as part of the boot camp will also ensure that knowledge attainment data is collected. The same could be done for the confidence evaluation tool and demographic and course evaluation surveys. The tools and surveys could be done on paper the day of class, so pre- and post-data are collected to get an adequate sample size. The design used in this study can also be replicated in all areas of nursing, not just trauma, including nursing academia.

Conclusions

Few researchers have studied simulation's effect on the education of inpatient nurses on how to care for trauma patients' post-resuscitation. While there were numerous studies on simulation, few used the format of simulation and debrief, followed by focused education that is repeated for four rounds followed by a final simulation. While this format did not impact skill level or UICU admissions, it significantly impacted confidence levels in inpatient trauma nurses. Further research is needed to determine the true impact of the trauma boot camp on knowledge, skills, and UICU admissions.

References

- Abe, Y., Kawahara, C., Yamashina, A., & Tsuboi, R. (2013). Repeated scenario simulation to improve competency in critical care: A new approach for nursing education. *American Journal of Critical Care*, 22(1), 33-40. https://dx.doi.org/10.4037/ajcc2013229
- Abelsson, A., Lindwall, L., Suserud, B. O., & Rystedt, I. (2017). Effect of repeated simulation on the quality of trauma care. *Clinical Simulation in Nursing*, 13(12), 601-608. https://dx.doi.org/10.1016/j.ecns.2017.07.006
- Abelsson, A., Rystedt, I., Suserud, B. O., & Lindwall, L. (2018). Learning high-energy trauma care through simulation. *Clinical Simulation in Nursing*, 17, 1-6. https://doi.org/10.1016/j.ecns.2017.11.009
- Agency for Healthcare Research and Quality. (2017). *TeamSTEPPS® teamwork perceptions questionnaire (T-TPQ) manual*. Retrieved from www.ahrq.gov.
- Agency for Healthcare Research and Quality. (2019, September 7). *Debriefing for clinical learning*. Patient Safety Network. https://psnet.ahrq.gov/primer/debriefing-clinicallearning.
- Alluri, R. K., Tsing, P., Lee, E., & Napolitano, J. (2016). A randomized control trial of high fidelity simulation versus lecture-based education in clinical preclinical medical students.
 Medical Teacher, 38(4), 404-409. https://doi.org/10.3109/0142159X.2015.1031734
- Anusiewicz, C., Fifolt, M., Montgomery, A., & Patrician, P. (2021). Survey methodology and response rates among Alabama inpatient staff registered nurses. *MEDSURG Nursing*, 30(6), 407-418.
- Bodine, J. L., & Miller, S. (2017). A comparison of lecture versus lecture plus simulation.

Journal of Hospice & Palliative Nursing, 19(1), 34-40.

https://doi.org/10.1097/NJH.000000000000302

- Brydges, R., Hatala, R., Zendejas, B., Erwin, P. J., & Cook, D. A. (2015). Linking simulationbased educational assessments and patient-related outcomes: A systematic review and meta-analysis. *Academic Medicine*, 90(2), 246-256. https://doi.org/10.1097/ACM.00000000000549
- Chang, A., Nadkarni, V. M., Mancini, M. B., Hunt, B. A., Sinz, E. H., Merchant, R. M.,
 Donoghue, A., Duff, J. P., Eppich, W., Auerbach, M., Bigham, B. L., Blewer, A., Chan,
 P. S., & Bhanji, F. (2018). Resuscitation education science: Educational strategies to
 improve outcomes from cardiac arrest: A scientific statement from the American Heart
 Association. *Circulation*, 138(6), e82-e122.

https://doi.org/10.1161/CIR.000000000000583

- Connell, C. J., Endacott, R., Jackman, J. A., Kiprillis, N. R., Sparkes, L. M., & Cooper, S. J. (2016). The effectiveness of education in the recognition and management of deteriorating patients: A systematic review. *Nurse Education Today*, 44, 133-145. https://doi.org/10.1016/j.nedt.2016.06.001
- Courteille, J., Fahlstedt, M., Ho, J., Hedman, L., Fors, H., Von Holst, H., Fellander-Tsai, L., & Moller, H. (2018). Learning through a virtual patient vs. recorded lecture: A comparison of knowledge retention in a trauma case. *International Journal of Medical Education, 9*, 86-92. https://doi.org/10.5116/ijme.5aa3.ccf2
- Crowe, S., Ewart, L., & Derman, S. (2018). The impact of simulation based education on nursing confidence, knowledge and patient outcomes on general medicine units. *Nurse Education in Practice*, 29, 70-75. https://doi.org/10.1016/j.nepr.2017.11.017

- de Koning, R., Egiz, A., Kotecha, J. Ciuculete, A. C., Ooi, S. Z. Y., Bankole, N. D. A., Erhabor, J., Higginbotham, G., Khan, M., Dalle, D. U., Sichimba, D., Bandyopadhyay, S., & Kanmounye, U. S. (2021). Survey fatigue during the COVID-19 pandemic: An analysis of neurosurgery survey response rates. *Frontiers in Surgery*, *8*, 690680. https://doi.org/10.3389/fsurg.2021.690680
- Duverseau, M. O., Suma, D., Galvin, S. L., Conquest, A. M., & Schurr, M. J. (2019).
 Unexpected ICU admission is associated with pulmonary complications but not increased mortality: Rescue is essential for optimal patient outcome. *The American Surgeon*, 85(12), 1409-1413. https://doi.org/10.1177/000313481908501239
- Ding, M., Metcalfe, H., Gallagher, O., & Hamdorf, J. M. (2016). Evaluating trauma nursing education: An integrative literature review. *Nurse Education Today*, 44, 33-42. https://doi.org/10.1016/j.nedt.2016.05.002
- Field, A. (2020). Survey fatigue and the tragedy of the commons: Are we undermining our evaluation practice? *Evaluation Matters—He Take Tō Te Aromatawai*, 6. https://doi.org/10.18296/EM.0054
- Frank, B., Lewis, A., Magnotta, J., Guzzi, C., Clark, D., & Mitchell, J. (2020, April 1). Keep calm and stay out of the ICU: A comprehensive approach to reducing unplanned ICU admissions. Bulletin of the American College of Surgeons. https://bulletin.facs.org/2020/04/keep-calm-and-stay-out-of-the-icu-acomprehensive-approach-to-reducing-unplanned-icu-admissions/
- Frost, S. A., Alexandrou, E., Bogdanovski, T., Salamonson, Y., Parr, M. J., & Hillman, K. M. (2009). Unplanned admission to intensive care after emergency hospitalization: Risk factors and development of a nomogram for individualizing risk. *Resuscitation*, 80(2),

224-230. https://doi.org/10.1016/j.resuscitation.2008.10.030

- Garvey, P., Liddil, J., Eley, S., & Winfield, S. (2016). Trauma tactics: Rethinking trauma education for professional nurses. *Journal of Trauma Nursing*, 23(4), 210-214. https://doi.org/10.1097/JTN.00000000000218
- Guerrero, J. G., Ali, S. A. A., & Attallah, D. M. (2022). The acquired critical thinking skills, satisfaction, and self-confidence of nursing students and staff nurses through high-fidelity simulation experience. *Clinical Simulation in Nursing*, 64, 24-30. https://doi.org/10.1016/j.ecns.2021.11.008
- Haley, K., Martin, S., Kilgor, J., Lang, C., Rozzell, M., Coffey, C., Eley, S., Light, A., Hubartt, J., Kovach, S., & Deppe, S. (2017). Establishing standards for trauma nursing education: The central Ohio trauma system's approach. *Journal of Trauma Nursing*, 24(1), 34-41. https://doi.org/10.1097/JTN.00000000000260
- Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G. (2009). Research Electronic Data Capture (REDCap) A metadata-driven methodology and workflow process for providing translational research informatics support. *Journal of Biomedical Informatics*, 42(2), 377-338. https://doi.org/10.1016%2Fj.jbi.2008.08.010
- Harris, P. A., Taylor, R., Minor, B. L., Elliott, V., Fernandez, M., O'Neal, L. McLeod, L.,
 Delacqua, G., Delacqua, F., Kirby, J., & Duda, S. N. (2019). The REDCap Consortium:
 Building an international community of software platform partners. *Journal of Biomedical Informatics*, 95, 103208. https://doi.org/10.1016/j.jbi.2019.103208
- Harvey, E. M., Freeman, D. F., Bath, J., Meadows, G., Flinchum, M., & Collier, B. R. (2019).
 Impact of advanced nurse teamwork training on trauma team performance. *Clinical Simulation in Nursing*, *30*, 7-15. https://doi.org/10.1016/j.ecns.2019.02.005

- Heglad, P. A., Aarlie, H., Stromme, H., & Jamtvedt, G. (2017). Simulation-based training for nurses: Systematic review and meta-analysis. *Nurse Education Today*, 54, 6-20. http://dx.doi.org/10.1016/j.nedt.2017.04.004
- Hsu, L. Chang, W., & Hsieh, S. (2015). The effects of scenario-based simulation course training on nurses' communication competence and self-efficacy: A randomized controlled trial. *Journal of Profesional Nursing*, *31*(1), 37-49. http://dx.doi.org/10.1016.j.profnurs.2014.05.007
- Hustad, J., Johannesen, B., Fossum, M., & Hovland, O. J. (2019). Nursing students' transfer of learning outcomes from simulation-based training to clinical practice: a focus-group study. *BMC Nursing*, 18, 53. https://doi.org/10.1186/s12912-019-0376-5
- INACSL Standards Committee, Bowler, F., Klein, M., & Wilford, A. (2021). Healthcare simulation standards of best practiceTM professional integrity. *Clinical Simulation in Nursing*, 58, 45-48. https://doi.org/10.1016/j.ecns.2021.08.014
- INACSL Standards Committee, Charnetski, M., & Jarvill, M. (2021). Healthcare simulation standards of best practiceTM operations. *Clinical Simulation in Nursing*, 58, 33-39. https://doi.org/10.1016/j.ecns.2021.08.012
- INACSL Standards Committee, Decker, S., Alinier, G., Crawford, S. B., Gordon, R. M., & Wilson, C. (2021). Healthcare simulation standards of best practice[™] the debriefing process. *Clinical Simulation in Nursing*, *58*, 27-32.

https://doi.org/10.1016/j.ecns.2021.08.011

INACSL Standards Committee, Hallmark, B., Brown, M., Peterson, D. T., Decker, S., Beede-Wells, E., Britt, T., Hardie, L., Shum, C., Arantes, H.P., Charnetski, M., & Morse, C. (2021). Healthcare simulation standards of best practice[™] professional development. Clinical Simulation in Nursing, 58, 5-8. https://doi.org/10.1016/j.ecns.2021.08.007

INACSL Standards Committee, McDermott, D. S., Ludlow, J., Horsley, E., & Meakim, C. (2021). Healthcare simulation standards of best practiceTM prebriefing: Preparation and briefing. *Clinical Simulation in Nursing*, 58, 9-13. https://doi.org/10.1016/j.ecns.2021.08.008

INACSL Standards Committee, McMahon, E., Jimenez, F. A., Lawrence, K., & Victor, J. (2021). Healthcare simulation standards of best practice[™] evaluation of learning and performance. *Clinical Simulation in Nursing*, 58, 54-56. https://doi.org/10.1016/j.ecns.2021.08.016

- INACSL Standards Committee, Miller, C., Deckers, C., Jones, M., Wells-Beede, E., & McGee,
 E. (2021). Healthcare simulation standards of best practiceTM outcomes and objectives.
 Clinical Simulation in Nursing, 58, 40-44. https://doi.org/10.1016/j.ecns.2021.08.013
- INACSL Standards Committee, Persico, L., Belle, A., DiGregorio, H., Wilson-Keates, B., & Shelton, C. (2021, September). Healthcare simulation standards of best practiceTM facilitation. *Clinical Simulation in Nursing*, 58, 22-26. https://doi.org/10.1016/j.ecns.2021.08.010
- INACSL Standards Committee, Rossler, K., Molloy, M. A., Pastva, A. M., Brown, M., & Xavier, N. (2021). Healthcare simulation standards of best practice[™] simulationenhanced interprofessional education. *Clinical Simulation in Nursing*, 58, 49-53. https://doi.org/10.1016/j.ecns.2021.08.015
- INACSL Standards Committee, Watts, P. I., McDermott, D. S., Alinier, G., Charnetski, M., & Nawathe, P. A. (2021). Healthcare simulation standards of best practice[™] simulation design. *Clinical Simulation in Nursing*, 58, 14-21.

https://doi.org/10.1016/j.ecns.2021.08.009

Institute of Medicine Committee on the Adequacy of Nursing Staff in Hospitals and Nursing Homes. (1996). *Nursing staff in hospitals and nursing homes: Is it adequate?* National Academies Press. https://doi.org/10.17226/5151

Johnson, M. P., Hickey, K. T., Scopa-Goldman, J., Andrews, T., Boerem, P., Covec, M., & Larson, E. (2014). Manikin versus web-based simulation for advanced practice nursing students. *Clinical Simulation in Nursing*, 10(6), e317-e323. https://doi.org/10.1016/j.ecns.2014.02.004

- Johnston, M. J., Arora, S., King, D., Bouras, G., Almoudaris, A., Davis, R., & Darzi, A. (2015). A systematic review to identify the factors that affect failure to rescue and escalation of care in surgery. *Surgery*, 157(4), 752-763. https://doi.org/10.1016/j.surg.2014.10.017
- Jyoti, A. K., Mamata D., Khushbu, & Shalu. (2021). Simulation versus traditional method of teaching on the retention of birthing care. *Indian Journal of Forensic Medicine & Toxicology*, 15(3), 276–283.
- Kahraman, A., Gümüş, M., Binay, Ş., Zengin, D., Uzşen, H., Ardahan Sevgili, S., Çevik
 Özdemir, H. N., & Başbakkal, Z. (2019). The effect of simulation-based education on childhood epileptic seizure management knowledge, skills, and attitudes of nursing students. *Epilepsy & Behavior*, 100, 106497.

https://doi.org/10.1016/j.yebeh.2019.106497

Karatas, C., & Tuzer, H. (2020). The effect of simulation-based training on the self-confidence and self-satisfaction of nursing students dealing with patients under isolation. *Bezmialem Science*, 8(3), 227-232. https://doi.org/10.14235/bas.galenos.2019.3416

Karlberg, C. (2015). The survey fatigue challenge: Understanding young people's motivation to

participate in survey research studies [Unpublished master's thesis]. Lund's Universiteit.

Kaufman, E. J., Hatchimonji, J. S., Ma, L. W., Passman, J., & Holena, D. N. (2020).

Complications and failure to rescue after abdominal surgery for trauma in obese patients.

Journal of Surgical Research, 251, 211-219.

https://doi.org/10.1016/j.jss.2020.01.026

Kelsey, N. C., & Claus, S. (2016). Embedded, in situ simulation improves ability to rescue. *Clinical Simulation in Nursing*, 12(11), 522-527.

https://doi.org/10.1016/j.ecns.2016.07.009

- Kim, S. & Shin, G. (2016). Effects of nursing process-based simulation for maternal child emergency nursing care on knowledge, attitude, and skills in clinical nurses. *Nurse Education Today*, 37, 59-65. http://dx.doi.org/10.1016/j.nedt.2015.11.016
- Kirkpatrick, J. D., & Kirkpatrick, W. K. (2016). *Kirkpatrick's four levels of training evaluation*. Association for Talent Development.

Kolb, D. A. (1981). Learning styles and disciplinary differences. Jossey-Bass, Inc.

- La Cerra, C., Dante, A., Caponnetto, V., Franconi, I., Gaxhja, E., Petrucci, C., Alfes, C. M., & Lancia, L. (2019). Effects of high-fidelity simulation-based on life-threatening clinical condition scenarios on learning outcomes of undergraduate and postgraduate nursing students: A systematic review and meta-analysis. *BMJ Open*, 9(2), e025306. https://doi.org/10.1136/bmjopen-2018-025306
- Liaw, S. Y., Chan, S. W., Chen, F., Hooi, S. C., & Siau, C. (2014). Comparison of virtual patient simulation with mannequin-based simulation for improving clinical performances in assessing and managing clinical deterioration: Randomized control trial. *Journal of Medical Internet Research*, *16*(9): e214. https://doi.org/10.2196/jmir.3322

- Liaw, S. Y., Wong, L. F., Lim, E. Y. P., Ang, S. B. L., Mujumdar, S., Ho, J. T. Y., Mordiffi, S.
 Z., & Ang, E. N. K. (2016) Effectiveness of a web-based simulation in improving nurses' workplace practice with deteriorating ward patients: A pre- and postintervention study. *Journal of Medical Internet Research*, 18(2), e37-e38. https://doi.org/10.2196/jmir.5294
- Lisko, S. A., & O'Dell, V. (2010). Integration of theory and practice: Experiential learning theory and nursing education. *Nursing Education Perspectives*, 31(2), 106-108.
- Mariani, B., & Doolen, J. (2016). Nursing simulation research: What are the perceived gaps? *Clinical Simulation in Nursing*, *12*(1), 30-36. https://doi.org/10.1016/j.ecns.2015.11.004
- McCutcheon, K., Lohan, M., Traynor, M., & Martin, D. (2014). A systematic review evaluating the impact of online or blended learning vs. face-to-face learning of clinical skills in undergraduate nurse education. *Journal of Advanced Nursing*, 71(2), 255-270. https://doi.org/10.1111/jan.12509
- Mulvey, H. E., Haslam, R. D., Laytin, A. D., Diamond, C. A., & Sims, C. A. (2019). Unplanned
 ICU admission is associated with worse clinical outcomes in geriatric trauma patients.
 Journal of Surgical Research, 245, 13-21. https://doi.org/10.1016/j.jss.2019.06.059
- Mushta, J., Rush, K. L., & Andersen, E. (2017). Failure to rescue as a nurse-sensitive indicator. *Nursing Forum*, *53*(1), 84-92. https://doi.org/10.1016/j.jen.2017.05.007
- National League of Nursing. (2021a). *Descriptions of available instruments*. http://www.nln.org/professional-development-programs/research/tools-andinstruments/descriptions-of-available-instruments
- National League of Nursing. (2021b). *Use of NLN survey and research instruments*. http://www.nln.org/professional-development-programs/research/tools-and-instruments

- Orsi, T. D., Valadares, A. L. R., Orsi, P. M. E., Orsi, I. M. E., & Moura, A. S. (2020). Simulation-based training for pelvic and breast physical examination: Effect on anxiety and self-confidence of medical students. *Revista Brasileira de Ginecologia e Obstetrícia*, 42(11), 739-745. https://doi.org/10.1055/s-0040-1718433
- Parikh, P., Samraj, R., Ogbeifun, H., Sumbel, L., Brimager, K., Alhendy, M., McElroy, J., Whitt, D., Henderson, C., & Bhalala, U. (2022). Simulation-based training in high-quality cardiopulmonary resuscitation among neonatal intensive care unit providers. *Frontiers in Pediatrics*, *10*, 808992. https://doi.org/10.3389/fped.2022.808992
- Peters, V. K., Harvey, E. M., Wright, A., Bath, J., Freeman, D., & Collier, B. (2018). Impact of a TeamSTEPPS trauma nurse academy at a level I trauma center. *Journal of Emergency Nursing*, 44(1), 19-25. https://doi.org/10.1016/j.jen.2017.05.007
- Peterson, L. N., Eva, K. W., Rusticus, S. A., & Lovato, C. Y. (2012). The readiness for clerkship survey: Can self-assessment data be used to evaluate program effectiveness? *Academic Medicine*, 87(10), 1355-1360. https://doi.org/10.1097/ACM.0b013e3182676c76
- Polit, D. F. (2010). Statistics and data analysis for nursing research (2nd ed.). Pearson.
- Polit, D. F., & Beck, C. T. (2017). *Nursing research: Generating and assessing* evidence for nursing practice (10th ed.). Wolters Kluwer.
- Rice, Y., DeLetter, M., Fryman, L., Parrish, E., Velotta, C., & Talley, C. (2016). Implementation and evaluation of a team simulation training program. *Journal of Trauma Nursing*, 23(5), 298-303. https://doi.org/10.1097/JTN.00000000000370.
- Rosen, M. A., Salas, E., Silvestri, S., Wu, T. S., & Lazzara, E. H. (2008). A measurement tool for simulation-based training in emergency medicine: The simulation module for

assessment of resident targeted event responses (SMARTER) approach. *Simulation in Healthcare*, *3*(3), 170-179. https://doi.org/ 10.1097/SIH.0b013e318173038d.

- Roussas, A., Masjedi, A., Hanna, K., Zeeshan, M., Kulvatunyou, N., Gries, L., Tang, A., & Joseph, B. (2020). Number and type of complications associated with failure to rescue in trauma patients. *Journal of Surgical Research*, 254, 41-48. https://doi.org/10.1016/j.jss.2020.04.022
- Rubano, J. A., Vosswinkel, J. A., McCormack, J. E., Huang, E. C., Shapiro, M. J., & Jawa, R. S.
 (2016). Unplanned intensive care unit admission following trauma. *Journal of Critical Care, 33*, 174-179. https://doi.org/10.1016/j.jcrc.2016.02.012
- Said, S. A. E., Saied, E. A. R., Gaafar, H. A. A., & El-Houfey, A. A. (2021). Effect on simulation on maternity nurses' knowledge, practice and self-efficacy during management of eclamptic fits. *International Journal of Nursing Education*, 13(1), 128-136. https://doi.org/10.37506/ijone.v13i1.13329
- Sharoky, C. E., Martin, N. D., Smith, B. P., Pascual, J. L., Kaplan, L. J., Reilly, P. M., & Holena, D. N. (2019). The location and timing of failure-to-rescue events across a statewide trauma system. *Journal of Surgical Research*, 235, 529-535. https://doi.org/10.1016/j.jss.2018.10.017
- Society of Trauma Nurses. (2020). Advanced trauma care for nurses. Retrieved from www.atcnnurses.org
- Smith, A., Ibraheem, K., Tatum, D., Schroll, R., Guidry, C., Mcgrew, P., Mcginness, C., & Duchesne, J. (2019). Failure to rescue: A quality improvement imperative in achieving zero death in damage control laparotomy patients. *The American Surgeon*, 85(9), 973-977. https://doi.org/10.1177/000313481908500938

- Tammelin, E., Handolin, L., & Soderlund, T. (2016). Missed injuries in polytrauma patients after trauma tertiary survey in trauma intensive care unit. *Scandinavian Journal of Surgery*, 105(4), 241-247. https://doi.org/10.1177/1457496915626837
- Trauma Care After Resuscitation. (2021). *FAQ's: General information*. Retrieved from https://tcarprograms.visionem.org/faq/#faq-general
- Vandegrift, M. A., Granata, R., Totten, V. Y., Kellett, J., & Sebat, F. (2021). Review of 20 years of continuous quality improvement of a rapid response system, at four institutions, to identify key process responsible for its success. *Critical Care Explorations*, 3(8), e0448. https://doi.org/10.1097/CCE.00000000000448
- Virginia Department of Health. (2015). *Virginia trauma center designation manual*. Retrieved from www.vdh.virginia.gov
- Yu, S., & Roh, Y. S. (2017). Needs assessment survey for simulation-based training for gastrointestinal endoscopy nurses. *Nursing & Health Sciences*, 20(2), 247-254. https://doi.org/10.1111/nhs.12412

Appendix A

Evidence Tables

Article No.	Author Year	Purpose of Study	Conceptual Framework	Study Design Sample Setting	Major Variables	Measurement of Variable Data	Study Findings	Strength/Weakness Conclusion
	Abe, Y., 2013	To determine the effect of simulation on nurses' competen cy in Japan related to cardiovas cular critical care nursing. Examine whether repeated simulation s using a grading rubric improved nursing competen cy. Examine the effect of using simulation on nurses' perception s of teamwork in routine nursing care.	None mentioned.	Prospect ive open label study. Division of participa nts into four groups that rotated through four different simulati ons made up the sample. Debriefi ngs occurred after each rotation. Perform ance was rated using a rubric. Complet ion of the Teamwo rk Activity Inventor y in Nursing Scale (TAINS) occurred post-	IV Simulation DV1 Nursing Competenc y-skills and abilities. DV2 Teamwork in routine nursing care in their workplace. No definition provided.	DV1 Rubric scored on 4 level scale with 1 being not done and 4 being well done. DV2 TAINS by Takayama and Takeo. Article reports reliability was validated in Japan, but no measurement data was mentioned. Medians, Wilcoxon signed- rank test, Cronbach α	DV1 All groups had low mean rubric scores (range 16.0- 18.7) in the first simulation. By the fourth simulation the mean rubric scores ranged from 22.7-27.7. There was no statistical analysis done comparing rubric scores outside of reporting the mean score. DV2 Cronbach α for 6 subscale items before and after all rotations were 0.7 or higher. Subscale items "attitudes of the superior" and "Confidence as a team member" had strong significant differences (p<.01) pre to post. Subscale item "Job satisfaction" had a significant difference pre to post with a p<.05. Overall, the repeated scenario simulation method improved clinical performance and nontechnical skills, such as teamwork.	LOE III Use of a validated tool (TAINS) and scoring rubric to ensure standardization across faculty/small sample size, single setting, participants volunteered. Little to no risk or harm to participants if study is adopted. Very feasible to my practice as repeated simulations is part of my DNP project. Overall, repeated simulations had a positive effect on nursing competency in both technical and nontechnical skills. Although, I would have like to have statistical analysis of the grading rubric to see exactly how much of an effect simulation had on nursing competency. Recommendation- further study with a larger sample size, preferably multicenter that has statistical analysis of all the data collected. I would also recommend having the faculty grade participants using the same rubric to compare difference between self, peer and faculty rubric scores.

				simulati on.				
				Japanes				
				e nurses				
				at a				
				universit				
				y haanital				
				hospital working				
				a				
				cardiova				
				scular				
				critical				
				care				
				unit.				
				N=24. No				
				attrition				
				is				
				mention				
				ed in the				
	41.1	T		article.				
2	Abelsso	To	None	Interven	IV Simulation	IV Trauma	P <0.5 comparing	LOE
	n, 2017.	determine the effect	mentioned.	tion study.	Simulation DV	surgeon and anesthesiologist	first simulation to last simulation in	Tested interrater reliability, used a
		of trauma		Simulati	Trauma	specializing in	inspection of chest	validated tool (GRS),
		simulation		on was	skills	prehospital	for both groups. The	use of content experts
		participati		done		emergency care	group that only had	to review flowcharts
		on on		with		assisted in	2 simulations total	and build simulations
		trauma		two		scenario	had a significant	and piloting the
		care skills		separate		development to	decrease in exam of	simulations prior to
		in nurses working		groups. The first		ensure content validity. They	the pelvis (p<.05). Statically significant	study start/small sample size, single
		in		group		were then piloted	(p<.05)	center, participants
		prehospita		complet		by 4 nurses that	improvement for the	volunteered, data
		l care. To		ed four		did not participate	first group from the	tables detract from
		also		simulati		in the study.	1 st to the last	the article.
		examine		ons with		DV Global	simulation. Overall,	This study is feasible
		the associatio		each one 8		Rating Scale (GRS) for	group A with a simulation once	for my practice since I work with
		n between		weeks		assessment of	every 8 weeks had	emergency nurses
		the		apart.		paramedic	statistically	and EMS. This can
		frequency		The		clinical	significant (p<.05)	be easily translated to
		of trauma		second		competence by	improvement in	nursing in the
		simulation		group		Tavares et al;	their skills when	hospital as well.
		and the effect of		did the 1 st and		2013, was used to score trauma	compared to the	Simulations done on a more frequent basis
		trauma		4^{th}		skills	group that had 2 simulations 6	improve skills related
		simulation		simulati		competence.	months apart.	to trauma care.
		on trauma		ons at 6		Interrater	Frequency of	Recommendation:
		care skills		month		reliability was	simulation has a	Further study with a
		in		intervals		reported as Kappa	positive effect on	larger sample size,
		prehospita		· Employed		of 0.75 to 0.94	trauma skills in	and at more than one
		l emergenc		Evaluati ons		and internal consistency as	prehospital emergency nurses.	center. Data tables are very busy and do
		emergenc y nurses.		were		Cronbach α of	emergency nurses.	not provide any
L	1	y nurses.	1	were	1			not provide any

done	0.53-0.89.	statistical analysis to
during	Flowchart for	the ready so revising
the 1 st	ABCDE was also	them or discussing
and 4 th	used to grade	the actual statistical
simulati	patient	test results in the
on.	assessment,	results section would
Simulati	examinations, and	be helpful to the
ons	care interventions	reader
were	that participants	
done in	were expected to	
pairs	perform.	
with one	Validated by	
doing	having an	
the	emergency	
assessm	physician review	
ent and	the flowchart	
the	prior to use.	
	Interrater	
other		
acting	reliability was	
under	tested and found	
the	to be 95%.	
directio		
n of the		
first		
person.		
Scenario		
s lasted		
2-11		
minutes.		
Debriefi		
ng		
followe		
d		
simulati		
on end.		
Conveni		
ence		
sample.		
Assigne		
d to		
groups		
based		
on		
geograp		
hic		
location.		
Nurses		
in		
prehospi		
tal care.		
N=63.		
N=03. 27 in		
one		
group		
and 36		
in the		

3.	Abelsso n, A. (2018).	To determine nurse's perception s of	Simulation model by Dieckmann.	other. From 5 ambulan ce bases in 3 regions in Sweden. Nurses voluntee red to take part. 18 were lost to attrition due to maternit y leave (n=3), left EMS (n=15). Qualitati ve, phenom enograp bic	IV Nurses perceptions related to learning through	Interviews were conducted at the end of the simulations during working	Nurses felt that simulation enabled their learning, helped them gain knowledge and	II Study was a follow up to an earlier study, so it helped strengthen the
		s of trauma care using simulation in prehospita l emergenc y care.		hic method. Nurses who participa ted in the repeated simulati on study done by the authors. N=20	through simulation, learning through observation , learning through debriefing, and learning in a simulated environmen t. DV Simulation as described in the previous study using 4 groups with two 3 member teams rotated through 4 zones or simulation scenarios.	during working hours with 2 participants at a time. An open- ended question started the interview with subsequent questions based on participants responses. Interviews lasted 21-34 minutes and were recorded and transcribed by the first author. Two authors read transcripts and found select quotes and pooled meanings were identified then categorized based on similarity.	knowledge and skills related to trauma care, and how to prioritize patients. Nurses also felt that repeated simulation taught them how to respond, what to look for and what to anticipate. The repeated simulations provided easier recall in actual patient care.	strengthen the quantitative study/Small sample size, used volunteers, and single setting. This is a feasible method that can be employed by any researcher. I could use this method to determine how subjects perceived my DNP project. Very minimal risk to participants outside of discomfort of speaking openly to the interviewer running the study. Nurses found simulation to be a very effective method to improving their knowledge as well as their time to retrieving that knowledge in a high stress trauma setting.

Step 1	I recommend more
groups	qualitative studies
were given	following
brief case	quantitative ones to
information	determine what value
. Step 2	the participants
first 3	placed on the
people in	intervention. It can
the group	further identify the
did the	effectiveness of the
simulation	intervention.
with	intervention.
debriefing	
while the	
other 3 in	
the group	
observed.	
Step 3	
those who	
did the	
simulation	
used the	
rubric to	
grade	
themselves.	
Step 4 Post	
simulation	
debriefing	
occurred	
with just	
those who	
did the	
simulation	
with faculty	
and	
observers	
providing	
feedback.	
Step 5	
observers	
now take	
part in a	
simulation.	
Step 6	
second	
group	
grades their	
own	
performanc	
e with the	
rubric. Step	
7 actions in	
step 4	
repeated.	
Debriefing	
occurred	
occurren	

					right after			
					the			
					simulation.			
4.	Alluri,	То	None	Random	IV1	DV1 Test pre and	Both groups had	II
	R	compare	mentioned.	ized	Simulation	post class with 12	significant	Test questions were
	(2016).	the		controll	Each group	multiple choice	improvement	built off of a test
		efficacy		ed	had 2	questions.	(p=0.023, p=.0001)	bank of questions
		of		crossove	simulator	DV2 Test at 5	from pre to post test.	developed by the
		simulation		r study	sessions	weeks after	When compared to	authors off the main
		versus		Second	and rotated	course	lectures, high	teaching objectives.
		lecture-		year	through 4	completion with	fidelity simulations	The bank was used to
		based		medical students	scenarios with the	12 multiple	provided immediate	provide random test
		education among		enrolled	same	choice questions Test scores were	knowledge gain along with long-	questions for 3 tests to reduce bias based
		preclinical		in the	instructor.	averaged as	term knowledge	on memorization.
		medical		Cardiov	Each	percentages for	retention (p=0.036).	Tests were closed
		students.		ascular,	scenario	pre, post, and	recention (p=0.050):	book with a proctor
		statemest		renal,	was 20	delay post and		to reduce bias related
				and	minutes	then compared.		to cheating/Small
				respirato	followed by	Average change		sample size, single
				ry	a 10 minute	for each test for		center, subjects
				medicin	debrief.	simulation		volunteered.
				e II	IV1 Lecture	compared to		This study is feasible
				course	each group	lecture was also		but would take more
				at	had 2	calculated. A		resources than other
				UCLA	lecture	cross method		studies reviewed in
				that voluntee	based sessions	comparison of the		this paper as there
				red.	that were	average change was done for the		was 1 faculty member for each of
				N=20.	30 minutes	tests for		the scenarios and 1
				Four	each.	simulation and		for each of the
				students	DV2	lecture. A two-		lectures.
				lost to	Knowledge	tailed students t-		While lectures had
				attrition	gain from	test was used as		the same impact on
				for the	pre to	well as a Shapiro-		immediate
				delayed	immediatel	Wilks test for		knowledge gain,
				test but	y post	normalcy. SPSS		simulations proved to
				were	course	was used and		be more effective on
				still	completion	significance was		long-term knowledge
				included in the	using a 12	set at a p <.05.		retention.
					item multiple			Further study is needed to determine
				pre-post analysis	choice			if the study findings
				unury 515	question			can be replicated.
					test.			Previous studies have
					DV3 Long-			shown simulation to
					term			be an effective
					knowledge			method for
					retention at			knowledge gain.
					5 weeks			Repeating this study
					using a 12			but using a
					item			comparison study
					multiple			with a control group
					choice			for the lecture may
					question			strengthen the
L	1	1		1	test.	l		

								findings of this article.
5.	Bodine, J.L. (2017).	To determine which of two education al approache s to the ELNEC course is more effective in increasing emergenc y nurse's knowledg e related to EOL care.	Benner's model of novice to expert was used to divided the nurses into groups.	Quantita tive, cross- sectiona l, descripti ve design Conveni ence sample of emergen cy nurses from a level I trauma center who voluntee red to participa te. N=53	IV1 Lecture-3 eight hour lecture days IV2 Lecture plus simulation- same as IV 1 with the addition of 2 simulations. DV1 Knowledge -test score improveme nt from pre to post test	DV1 the ELNEC abbreviated 25 question test was used to measure knowledge gain for both IV1 and IV2 SPSS. Independent t tests. Descriptive statistics, Mann- Whitney U tests, Levene's test, dependent t tests with boot strapping.	There was no significant difference in knowledge gain when comparing lecture to lecture plus simulation (p >.05). However, there was statistically significant knowledge gain (p <.05) for both groups when comparing scores separately by group. Statistically significant improvement was found between mean EOL scores and post ELNEC training mean scores for the whole sample (p < .016).	III Use of a standardized course and test from ELNEC, simulations based on real life situations, use of standardized family member, physician, and high fidelity sim man. Subjects randomly assigned themselves to groups based on which day they chose to attend the course /A natural bias, zone in which nurses worked in the ER could bias results, small sample, test was not piloted, open dialogue in each course could have provided different experiences, thus biasing results, nurses volunteered This is a very feasible study as the course used the ELNEC curriculum and test which is already developed. Use of real life situations from their facility for simulations made the content more relevant to the subjects. While there were no differences in test scores between groups pre-post, both groups showed improvement in knowledge, demonstrating that either method is effective. II
6.	le, J. (2018).	compare medical students' and	mentioned.	Random ized control Fourth year	patient training using a standardize	DV1 12 multiple choice question test after the intervention and another test at	There was no difference in knowledge gain on test 1 (p>.05) when using a virtual	Large sample size, random assignment/Due to constraints

· · · · · · · · · · · · · · · · · · ·						
	residents'	medical	d family	least 2 months	patient when	knowledge gain from
	knowledg	students	member	after the	compared to a	test 1 to test 2 could
	e retention	and	and	intervention.	recorded lecture.	be monitored, Test 2
	of	orthope	physician	DV2	Both groups had a	done online with no
	assessmen	dic	and a high	Questionairre	small knowledge	control of use of
	t,	resident	fidelity sim	filled out	decline in test 2	external aids, only
	diagnosis,	s in	man. Able	immediately after	when compared to	used one patient case
	and	Sweden	to	the first test.	test 1 (p>.05), and	This is a feasible
	treatment	that	assessment	Asked about	there was no	study as one could
	procedure	voluntee	patient, talk	attitudes and	difference in test 2	easily replicate the
	s, as well	red and	to family	perceptions of the	scores between	format used by the
	as	were	member	learning	groups (p>.05).	authors and is cost
	learning	randoml	and report	experience. Four	Learning experience	effective.
	experienc	У	to the	close ended	was no different	While there was no
	e, of	assigned	standard	questions used a	between the groups	difference in
	patients	to a	physician	Likert scale	either. However,	knowledge gain,
	with	group.	their	about IT	participants were	participants self-
	spinal	N=170	findings.	experience and	more engaged with	reported higher levels
	trauma		Ended with	proficiency and	the virtual patient	of engagement with
	after		feedback.	15 close ended	format based on the	the virtual patients.
	training		Lasted 45	questions used a	open ended question	I recommend further
	with a		minutes.	Likert scale about	responses.	study using more
	virtual		IV2 Video	current cognitive		than one patient case
	patient		recorded	and affective		scenario as this may
	case or a		traditional	states. Two		show the virtual
	video		lecture 13	additional		method has a bigger
	recorded		minute	questions for		impact on knowledge
	traditional		recorded	virtual group. Six		gain.
	lecture.		lecture that	questions on		
			filmed the	general opinion		
			PowerPoint	and perceptions		
			and	of the learning		
			presenter.	experience using		
			Followed	a Likert scale.		
			by			
			discussion	RM-ANOVA for		
			of the topic.	test scores		
			DV1 Long-			
			term			
			knowledge			
			retention			
			related to			
			assessment,			
			diagnosis,			
			and			
			treatment of			
			trauma			
			cases			
			DV2			
			Educational			
			benefits if			
			virtual			
			learning			
			versus traditional			
			traditional			
			lecture by			

73

					looking at participants self- reported learning experiences			
7.	Ding, M. (2016).	To review the current literature on trauma nursing education	Whitmore and Knaff theoretical framework for integrative review.	Integrati ve literatur e review Design sample and setting NA	160 full text studies included in review. Only 17 studies; 9 quantitative ,7 qualitative, and 1 review, met inclusion criteria.	NA	There is a shortage of studies that evaluate the effectiveness of trauma nursing courses on patient outcomes. Very limited literature that evaluates trauma nursing education, however one study found poor knowledge retention at 3 months post intervention and recommends refresher training.	I Use of Bowling's and Pearson's validated appraisal checklists, used only peer reviewed articles, clear inclusion criteria, 2 stages of review during article selection, gray literature search, clear documentation of exclusion criteria, use of a PRISMA flow chart, majority are quantitative methods, use of Australian NHMRAC Evidence Hierarchy/Limited studies on the topic, no mixed method studies were found, no confirmation by a second person to ensure accuracy An integrative review is a feasible design; however, it can be time consuming. This study demonstrates the lack of literature on trauma nursing education and evaluation of trauma courses. This is the reason my DNP project is focused on trauma nursing education. This study further supports my recommendation on the need for more research on trauma nursing education.

0		T	NT	Dut	IVT	DV1 00 111 1		TH
8.	Garvey, P. (2016)	To assess the effectiven ess of the Trauma Tactics course.	None mentioned.	Retrosp ective descripti ve study. Nurses who previous ly participa ted in the Trauma Tactics Course that complet ed all the required study docume nts. N=55	IV Trauma Tactics Course DV1 Knowledge gain measured with pre- and post- tests DV2 Perceived confidence measured with a survey pre- and post- course DV3 Ability to perform a trauma assessment in a clinically simulated environmen t measured with assessm	DV1 20 multiple choice question test scores pre and post course DV2 6 question survey using a 5 point Likert scale pre and post- course DV3 simulation assessment scores after sim zero and sim final Mean, median, mode, range, % increase	The Trauma Tactics course demonstrated improvement in learners comfort levels with a percent increase ranging from 11.8% to 42.7%. There was a mean of 16.5 on the pre-test and 19 on the post-test for knowledge. 80% of learners experienced an increase in test scores pre to post- test. The average increase in scores was 3.3 points. For simulation performance there as a mean of 10.22 for sim zero and 26.25 for sim final. 100% of learners had an increase in test scores pre to post-test with an average increase of 16 points in simulation scores.	III retrospective design that only included those who completed all of the study documents/small sample size, single center, retrospective design, lack of statistical analysis to demonstrate study effects. This is a feasible study to replicate, however a 2 day course could impact staffing levels and reduce the number of people able to participate. Use of the trauma tactics course using simulation and lecture positively impacted knowledge gain, simulation performance and comfort levels of nurses caring for trauma patients. I recommend this study be replicated as a prospective design. Use of a comparison method, such as lecture only, could further strengthen the trauma tactics course
9.	Haley,	To discuss	None	Modifie d Dalahi	42	NA	Forty-two trauma	effectiveness. VIII Use of the Delphi and
	K. (2017).	a novel process of identifyin g and establishi ng standardiz ed trauma nurses care objectives for ACS- verified trauma centers in	mentioned.	d Delphi and the Delphi method. Seven regional trauma centers in central, eastern, and southern Ohio	objectives were sent to the committee. Modified Delphi was used to narrow it down to 5 objectives. The Delphi method was used on the 5 objectives with 3 final		nursing educational objectives were identified. That list was narrowed to three objectives that serve as the framework for regional educational guidelines for trauma nursing.	Use of the Delphi and modified Delphi method, inclusion of the timeline of events and what occurred at each step, mention that standardized courses such as TNCC meet their objectives, did a gap analysis/they mention a pathway to implement the objectives was developed but they

r	1							
		central,			objectives			do not share it in the
		eastern,			identified			article
		and						This is a feasible
		southern						study as long as other
		Ohio, and						centers wish to
		members						participate.
		of the						Developing specific
		Central Ohio						objectives for trauma education for the
		Trauma						state trauma centers
		System.						can standardize
		System.						trauma education and
								help identify gaps in
								the system.
								I recommend this
								article to address
								trauma nursing
								education. There are
								very few
								standardized trauma
								nursing courses
								available, so
								education varies
								greatly.
10.	Johnson	То	None	Quasi-	IV1	IV2 time and	Comparing pre to	III
	, M.P.	compare	mentioned	experim	Maniken	action for each	post training, both	Blinding of trainers
	(2014).	the levels		ental	training-	student response	groups had	and evaluators,
		of Iso assile day		pre-	used	was logged by the	significant	interdisciplinary team
		knowledg		post-test	SimMan 3G and	software. DV1 Brief self-	improvements	of experts used as
		e, attitudes,		design. Conveni	SimMan	assessment	(maniken p <.001, web p<.001, self-	consultants during study design and as
		and skills		ence	Essentials.	questionnaire pre	assessed knowledge	course faculty/small
		related to		sample	IV2 Web-	and post training.	p<.02). There was	sample size, single
		managing		of	based	Scores could	statistically	setting, varied levels
		critically		graduate	training-	range from 4-20	significant	of previous nursing
		ill patients		nursing	DXR	DV2 Brief self-	improvement in	experience,
		between		students	Clinician a	assessment	scores on self-	This is a feasible
		advanced		over 3	web-based	questionnaire pre	assessment in the	study as long as one
		practice		semester	software-	and post training.	maniken group	has access to sim
		nursing		s prior	training	Scores could	(p=.001). The	manikens and the
		students.		to	program	range from 5-25	maniken group also	web-based software.
				starting	that is	DV3 Brief self-	scored significantly	They are costly and
				clinical	interactive.	assessment	higher than the web	could be a barrier to
				rotations	Students	questionnaire pre	group in observed	implementation.
				. N=32	were able	and post training.	performance scores	Simulation and web-
				(ACNP	to,	Scores could	(p=.02).	based training were
				27, CRNA-	interview,	range from 9-45. Performance		effective in
				CRNA = 5	examine,			improving observed
				5)	diagnose, and treat	checklists pre-		performance skills. The maniken group
					patients.	post training used by independent		performed better on
					DV1	raters modeled		the self-assessment
					Knowledge	after ones used by		and observed
					Questionnai	Steadman,		performance mean
					re modeled	Schwartz, and		scores. So, while both
					after one	Morgan. Each		methods are
L	1	1		1		morgan. Lach		memous are

11.	LaCerra , C. (2019)	To analyze the effectiven ess of high fidelity patient simulation	Cochrane Handbook for Systemic Reviews of Intervention s, Preferred Reporting Items for Systematic	Systema tic review and meta- analysis	clinical managemen t 12-20 items, Full texts published in English, French, Spanish, and Italian. Samples included undergradu	Random Effect Model, Cohen's d, Krippendorff's alpha coefficient, 95% CI, Egger's regression, Trim and Fill, fail-safe number methods, Q-test, I ² ,	HFPS had larger effect sizes for knowledge (d=0.49, 95% CI 0.17-0.81) and performance (d=0.50, 95% CI 0.19-0.81) when compared to any other teaching	I Systemic review and meta-analysis, checked for publication bias, heterogeneity, use of models for the type of review, used 3 independent raters,
					knowledge DV2 Attitudes Questionnai re modeled after one done by Weller. 5 questions for attitudes DV3 Skills Questionnai re modeled after one done by Weller. 9 questions for skills Performanc e checklist used by independen t raters modeled after ones used by Steadman, Schwartz, and Morgan. History taking 15- 21 items,	score totals of 0- 35 for each checklist of 0-140 for all four checklists combined. Descriptive data summarized. Paired sample t tests, Mann- Whitney U, regression models,		web-based training. I recommend using both methods for training. Further study on combining the two methods may show that is a much more successful method than using just one or the other.
					done by Weller. 4 questions for	item had a weighted score from 0.5-3 points with possible		effective, the maniken training proved to be more effective than the

ſ							Γ	
		condition	Appraisal		taking part			raters using
		scenarios	Checklist for		in high			Krippendorff's alpha
		on	Quantitative		fidelity			coefficient/only a few
		undergrad	Intervention		patient			used an experimental
		uate and	Studies		simulation.			design, selection bias
		post-	Studies		A total of			could be present in
		*						
		graduate			33 articles			the studies used,
		nursing			were			heterogeneity
		students'			included			present, differing
		learning						levels of education,
		outcomes.						publication bias
								towards self-efficacy,
								lack of demographic
								data, measurement
								tools, session
								duration, and model
								used for debriefing
								limited analysis of
								the studies
								This is a feasible
								study for my practice
								but not for my DNP
								project. While this
								addresses simulation,
								it does not focus on
								trauma education.
								HFPS has a
								significantly positive
								impact on knowledge
								and performance
								when compared to
								other teaching
								methods.
								I recommend using
								this article as a way
								to address gaps in
								knowledge and
								performance related
								to deteriorating
10	T ·	T	N	D	11101	DV1 "		clinical conditions.
12.	Liaw,	То	None	Prospect	IV1 2-hour	DV baseline	Both groups had	II
	S.Y.	describe	mentioned.	ive	fully	testing using	statistically	Subjects wore gowns,
	(2014).	the		randomi	automated	mannequin-based	significant	caps, and masks to
		developm		zed	virtual	simulation for all	improvements in	blind them to raters
		ent of the		controll	patient	subjects after	both the first and	to reduce bias,
		virtual		ed trial	simulation-	randomization.	second post-test	construct and content
		patient		with	single user	Followed by	(p<.001). The	validity, and
		simulation		pretest-	interactive	interventions.	experimental group	interrater reliability
		and		post-test	multimedia	Tested	had significantly	tested with excellent
					simulation		lower scores on the	
		evaluate		design.		individually for		interrater reliability,
		its		97 Third	created	virtual group with	second post-test (p	video recorded all
		efficacy		year	with Flash	5 scenarios,	<.05) compared to	scenarios/difficult to
		for		nursing	software	mannequin group	their first test, but	account for
		improving		students	and run on	were tested in	the control group	differences in designs
		the		who had	a secure	groups of 6 led by	had no significant	and structures of
		nursing		undertak	server. Five	trained simulation	difference between	interventions, did not
L	1		1	andortun		in and a billion		

students'	en a 6	scenarios	facilitator through	the two (p=.94).	measure performance
performan	hour	were used	2 scenarios with	There were no	right after the 6 hour
ces in	manneq	with	each one	significant	RAPIDS course to
assessing	uin	debriefing	followed by	differences between	determine level of
and	based	after each	debriefing. Both	groups when	deterioration, same
managing	RAPID	one. All	groups had 2	comparing scores	duration for each
patients	S	sessions	hours for the	over time (P=.17).	group thus
with	simulati	video taped	intervention.	For the evaluation,	experimental group
clinical	on	IV2	Virtual group	the virtual patient	had a limited time to
deteriorati	program	facilitator-	completed a 19-	simulation scored	get through 5
on.	8	led	item	highly positive with	scenarios, small
	months	mannequin-	questionnaire	satisfaction (mean	sample size, single
	prior	based	using 7 point	6.06, SD 0.56),	setting, volunteered
	were	simulation	Likert Scale to	quality of the	to participate.
	invited	DV	evaluate learning	system (mean 6.01,	This study is feasible;
	to	Knowledge	experiences.	SD 0.71),	however, cost could
	participa		Both groups had	information (mean	be an issue if one
	te via		2 post-tests using	6.06, SD 0.50), and	does not have the
	email.		mannequin-based	net benefits (mean	required software or
	61		simulation	6.28, SD 0.59) on	simulation
	consente		assessments. First	the 7-point Likert	equipment.
	d to		test was 1-2 days	scale.	Both the
	participa		after intervention		experimental and
	te. Four		and the second		control groups had
	lost to		test was 2.5		significant
	attrition		months later.		improvement in
	due to		Recorded		knowledge from the
	scheduli		simulation		first to the second
	ng		performances		post-test. Looking at
	issues.		were observed		test one to test two
	N=57		and rated by		within the
			academic staff		experimental group,
			using RAPIDS		test scores were
			tool		significantly lower on
			Correlation		the second test.
			coefficient,		Overall, use of virtual
			Cronbach alpha,		patients demonstrated positive effects on
			effect size, Chi-		1
			square tests, t- tests, RM-		knowledge. My recommendation
			ANOVA,		is that virtual patient
			descriptive		simulation is another
			statistics of		effective method for
			means and		training in nurses,
			standard		especially since
			deviations		COVID has led to
			acviations		restrictions in class
					sizes and gathering.
					Ideally, using it in
					conjunction with
					mannequin
					simulations may
					prove to be an even
					more effective
					teaching method
	1				teaching method

13.	Mariani	To gain a	Naturalist	Descript	IV	IV Four	Existing research	VII
13.	Mariani, B. (2016).	To gain a better understan ding of the perceived gaps in simulation research. To identify areas of research saturation and areas of the science that need further evidence	Naturalist inquiry approach	Descript ive qualitati ve study with naturalis t inquiry approac h Conveni ence sample of registere d nurses that belong to the Internati onal Nursing Associat ion for Clinical Simulati on and Learnin g. N=90	IV Questionnai re with 7 structured open-ended questions and questions on demographi cs DV Simulation research- areas that have been well studied, gaps, obstacles to conducting research excluding funding	IV Four categories identified through content analysis DV Content placed into the categories to determine areas with the highest frequencies. Summative content analysis, objective 3 rd party expert in qualitative analysis reviewed transcripts to ensure accuracy of analysis	Existing research lacks vigor, and often uses small sample sizes at single settings. Lack of collaboration between universities and hospitals, availability of valid and reliable simulation research. Time was the biggest obstacle doing research followed by lack of resources/space, lack of participants, access to conduct multi-site studies, lack of experience/mentors, faculty support, lack of standardization, and lack of leadership support. Top priorities for research that measures the influence of simulation on patient outcomes, measure outcomes of simulation on student learning, need for more rigorous study design with larger sample sizes, more randomization and use of valid and reliable evaluation measures at multiple sites, studies that include simulations with vulnerable populations and ones that measure the outcome of simulation on patient on patient on patient on populations and ones that measure the outcome of simulation on patient safety.	VII Open ended questions verified analysis with a 3 rd party expert, 90 participants/Results only generalized to nursing, only focuses on members of INACSL not all of nursing, open-ended survey time of 20-30 minutes could deter participation, subjects may not fully understand simulation literature. A qualitative survey is feasible as it uses very little resources to perform the measurement. Analysis of the content can be time consuming. Rich data is obtained through the use of open-ended questions. The survey found the biggest gaps in multi- site simulation studies and studies that focus on student and/or patient outcomes. I recommend this article as it provides gaps in the current simulation literature that one can address in a study design.
14.	McCutc	То	Joanna	Mixed	Searches of	Critical appraisal	10 of 13 articles	I
	heon, K. (2014).	determine whether the use of	Briggs Institute	methods systemat	5 databases for the time period of	tools from JBI- MAStARI and JBI-QARI.	reviewed found that online learning was just as effective at	Synthesis conducted by primary reviewer and results regularly

	1		** ~ · ·		1005 55:5			
		an online	User Guide	ic .	1995-2013.	Predetermined	improving clinical	reviewed with review
		or blended	version 5	review	197 articles	themes of	knowledge in	team, use of Joanna
		learning			found; 31	method/research	nursing students.	Briggs Institute guide
		paradigm			full texts	design, study	Thirteen articles	for reviews, included
		has the			retrieved of	aims, sample	found that students	a variety of research
		potential			the 197	population,	gained higher or	designs, detailed
		to			found. Nine	outcome measure	similar levels of	explanation of
		enhance			were	and results used	clinical skills when	inclusion and
		the			removed due to not	to abstract data.	compared to	exclusion criteria
		teaching					traditional teaching	/Four studies were
		of clinical			meeting		methods. Five of 11	excluded due to being
		skills in			inclusion criteria.		studies found	non-English papers,
		undergrad			N=19 (17		students were more	excluded pilot and
		uate			N=19(17) on online		satisfied with online	feasibility studies,
		nursing.			approaches		learning compared to traditional	potential publication bias, quality appraisal
					and 2 on		learning.	stage did not exclude
					blended		icarining.	-
					approach;			any papers, wide variation of
					approach; 14			interventions used
					quantitative			made synthesis of
					, 3 mixed			data difficult,
					methods, 1			This is a feasible
					qualitative,			study to carry out.
					quantative,			Time is the biggest
					integrative			barrier when
					review).			undertaking a
					Limited to			systematic review.
					English			Teaching clinical
					papers.			skills using online
					Only			methods was just as
					studies			effective as
					using			traditional methods.
					undergradu			While online
					ate nursing			teaching is an
					students			effective method, one
					were			is unable to assess the
					included.			learner's
								comprehension of the
								skill in a real life
								situation. I
								recommend online
								teaching as an
								adjunct method for
								teaching clinical
								skills.
15.	Connell,	То	None	Mixed-	Initial	None mentioned	20 quantitative	Ι
	C.J.	identify	mentioned	methods	search 6908	in article.	studies, 2 mixed	Systematic
	2016.	the		systemat	results.		methods studies,	review/Only one
		evidence		ic	Peer		and 1 qualitative	RCT, most of the
		supportin		review	reviewed,		study. Effectiveness	studies were level III
		g			English		of the education was	or below, potential
		education			language,		measured based on	for sample
		al			2002-2014.		three outcomes,	contamination,
		effectiven					learner, patient, and	possible publication

				1	D II		10	
		ess in the			Duplicates		system. 19 studies	bias, reporting bias,
		recognitio			removed.		measured learner	small sample sizes,
		n and			794 results.		outcomes related to	some studies may
		managem			After		knowledge and/or	have unreliable
		ent of the			review 47		performance. Nine	statistical evidence
		deteriorati			studies		measured learner	This is a feasible
		ng patient			were		outcomes related to	study to conduct as it
		and			chosen.		confidence,	is lost cost and does
		outcome			Inclusion/e		communication,	not require many
		measures			xclusion		leadership, and/or	people to be
		used to			criteria		teamwork. Only 2	involved.
		evaluate			reapplied.		studies focused on	Simulation has a
		education			Final N=23		retention of skills or	positive impact on
		al					knowledge. Four	recognition and
		effectiven					studies measured	management of
		ess.					impact on patient	deteriorating patients
							care. Most of the	with high fidelity
							educational methods	simulations having
							reviewed showed a	more benefits than
							positive impact on	low fidelity
							the learner, patients,	simulations.
							and organizational	I recommend this
							outcomes.	article as it provides a
								synthesis of
								information related to
								the use of simulation
								and its impact on
								recognizing a
								patient's declining
								condition.
16.	Liaw,	То	Kirkpatrick'	Pre/post	IV e-	DV1 30 item	DV1 Both RN's and	III
	S.Y.	evaluate	s hierarchy	interven	RAPIDS	MCQ developed	EN's had a	e-RAPIDS was
	2016	the impact	of	tion	course a	to align with	significant	validated in a
		of web-	educational	study	web-based	program learning	improvement on	previous study,
		based	outcomes,	One	simulation	objectives,	post-test scores	content validity
		simulation	Keller's	surgical	using a	DV 2 5 point	(p<.001) compared	established by panel
		on nurses'	Model of	and one	virtual	Likert Scale	to pre-test scores.	of medical and
		recognitio	motivational	medical	patient	survey	DV 2 IMMS mean	surgical care experts,
		n of and	design	ward at	developed	immediately after	scores indicated	reporting of
		response		an acute	by a	e-RAPIDS course	nurses were	Cronbach alphas for
		to		care	multidiscipl	DV3 Self-	motivated to learn	the IMMS and the
		deteriorati		tertiary	inary health	reported	(mean 3.78, SD	questionnaire /lack of
		ng		teaching	care team.	questionnaire	0.56). e-RAPIDS	a control group, vast
		patients in		hospital	DV1	using 5 point	was also perceived	difference between
		clinical		in	Knowledge	Likert Scale on	to be more	the 2 units, short time
		settings.		Singapo	pre- and	their perceived	stimulating in	period for clinical
				re. All	post-test	training transfer	capturing nurse's	triggers data, small
				nurses	scores on	at their workplace	attention (mean	sample size, single
				working	30 item	that was	4.06, SD .52) as	center
				the 2	Multiple	conducted 3-4	well as building	This is a feasible
				wards	choice	months after	more confidence	study to conduct if
				were	question	training	(mean 3.83, SD	one can get
				schedule	test (MCQ)	(Cronbach alpha	0.44). RNs scored	permission to use the
				d to take	DV2	=.94).	significantly higher	e-RAPIDS course the
				the	Motivation	DV4 clinical	than the ENs overall	authors developed.
1				course.	al Reaction	records on cases	(p<.001).	Otherwise, the

				64 RNs and 35 enrolled nurses (EN), N=99 with an attrition of 16 for a final N=83 (58 RN, 25 EN)	completion of the Instructiona I Material Motivation Survey (IMMS) DV3 Training Transfer at workplace DV4 Change in organizatio nal practice	triggered by nurses from the study were checked by investigator for frequency and types of triggers over 6 months pre- and post- intervention. Cronbach alpha, descriptive statistics using means, standard deviations, counts, and percentages, paired t test, independent sample t-test, Chi-squared test, Fisher's exact test	DV3 All nurses had positive attitudes toward transfer of learning (mean 3.82, SD 0.52) but there was no significant difference between RNs and ENs. DV4 There was a significant increase ($p <.001$) in the number of cases triggered by nurses on the medical ward from pre- intervention to post- intervention. There was no difference in the surgical unit ($p=.15$).	content of the training may vary and not support the findings of this study. Nurses were more motivated and stimulated to learn, gained more confidence and knowledge with the e-RAPIDS course. Nurses also found that the training transferred to their workplace and changed their practice. I recommend replicating this study to further support the findings but using a control group and like units to limit the variations in patients. I would also recommend looking at triggers for a
17.	Brydges , R. 2015.	To examine the evidence supportin g the use of simulation -based assessmen ts as surrogates for patient- related outcomes assessed in the workplace	PRISMA standards, Messick's framework, Medical Education Research Study Quality Instrument	Systema tic review and meta- analysis	11,628 potential articles, 59 studies identified. 33 met inclusion criteria.	Messick's framework, interrater reliability, Cohen's classification, z- transformed correlation coefficients, I ² ,	Provider behavior pooled correlation was 0.51(95% CI 0.38-0.62), for time behaviors 0.44 (95% CI 0.15-0.66) and for patient outcomes 0.24 (95% CI -0.02- 0.47).	I Validity testing only used studies that reported correlation coefficients or that could be obtained from the authors, systematic review, meta-analysis, statistical power, rigor, no evidence of publication bias/gaps in validity, did not include standardized patient simulation articles, possible noncausal associations, nonuniform response to change, incomplete representation of a task. Reviews like this are feasible but can be time consuming and difficult to perform if one is inexperienced.

								Simulation based- assessments have a positive impact on patient-related outcomes. This review supports the use of simulation as a means to improve patient outcomes. I recommend further studies on the topic that address the gaps the authors found.
18.	Kelsey, N.C. 2016.	To determine the effect of in situ simulation during the course of a typical day on the ability to rescue.	None mentioned.	Quality improve ment study All RNs, LPNs, and unlicens ed assistive personn el on a regular inpatient medical -surgical unit over a 12 hour shift.	IV In situ simulation is a scenario using a standardize d patient that took place on the nursing unit over a 12 hour shift. Nurses were instructed to have 3 separate encounters during the shift. No intervention s were actually performed, they were verbalized. At the end of the encounter nurses were asked to make a decision on care and discuss causes for symptoms. Debriefing occurred at the end of	V Evaluation on experience, learning, facilitation methods, and relevance using a 5 point Likert Scale. DV Pre/post surveys on 4 themes (knowledge and comfort with SCI, neurological assessment, activation of rapid response, and escalation of the chain of command) scored with 5 point Likert Scale Percentages	Only 45% could identify that the symptoms were a result of the SCI. 90% could identify the problem as neurological. One nurse was able to correctly identify the level of SCI. Most nurses were not able to identify the patient changes, so they did not call for help. RNs had improved rankings with knowledge and comfort of SCI. LPNs have improvement in knowledge and comfort of SCI, neurological assessments, and activation of a rapid response. Staff were favorable of the real-time discussion and feedback from an expert, review of signs and symptoms of deterioration in SCI patients, and availability of resources.	

					each encounter. DV Ability to rescue- nurses identificatio n and response to patient deterioratio n in patients with spinal cord injuries(SC			
19.	Yu, S. (2017).	To assess the education al needs for simulation -based training for Korean GI endoscop y nurses.	None mentioned	Cross- sectiona l survey design. Conveni ence sample of nurses from GI endosco py units from 6 major hospital s in Korea. 251 surveys were mailed to potential participa nts with a final N=238 (respons e rate 94.8%).	I). IV GI nurses' society members in Korean DV Need for simulation based training related to GI nursing using a 35 item clinical competence importance- performanc e scale	DV A 5 point Likert Scale was used to rate importance and performance of each competence item. Descriptive statistics, exploratory factor analysis, principal component analysis, varimax rotation, paired t- test, Bartlett's test of sphericity, Kaiser-Meyer- Olkin value,	The highest mean for importance items on the survey was for performing CPR $(4.87 \pm .37)$ and the lowest mean was for participating in research $(3.81 \pm .71)$. For performance items, the highest mean was for performing preventative measures for falls $(4.95 \pm .33)$ and the lowest was for performing CPR $1.67 \pm .72$). Overall, there was a significant difference between importance and performance mean scores (p<.001). The largest differences were in the mean for emergency care (p <.001) and the smallest difference was in infection control (p<.001).	VI High response rate, power analysis estimated sample of 209 and the authors had a sample of 238 so study was adequately powered/Self- reported data, single site, one country This is a feasible study as it is a survey and easy to administer. The biggest barrier in surveys is getting a large enough response rate. For GI nurses, simulations related to emergency care ranked the highest area to focus on to improve patient care and safety. This study needs to be replicated in the US in order to generalize the results to populations here as training and patient care may differ in Korea.
20.	Kaufma n, E.J.	To determine the impact of obesity on	None mentioned	Retrosp ective cohort study	IV obesity DV failure to rescue defined as death after	ISS, MOI, physiology, comorbidities, FTR events,	The study found that obesity was not a predictor of risk for FTR, however obese patients were more	III Large sample size, 30 sites involved, use of trauma registry/variations in

		outcomes, such as failure to rescue, after traumatic injury and major surgery		30 level I and II PA trauma centers. 95,806 patient charts were included with 15,253 of those being obese patients.	a complicatio n.	patient demographics Risks regressions, multivariable logistic regression, chi- squared, Mann- Whitney, t-test	likely to have complications such as infections or respiratory decline. The higher risk of complications places the obese patient at risk for FTR, however, Kaufman et al. (2020), felt that their facility must manage these complications well since there was no difference in FTR between the non- obese and the obese. 42% of obese patients had at least 1 complication and 28.7% had at least two. The most common	obesity classification, did not look at type of procedures done in the OR, registry may have misclassified data. While obesity did not impact FTR, it did have a correlation with complications after trauma surgery, such as pneumonia and sepsis. This is very relevant to trauma practice. Obesity is a national epidemic so all trauma centers will be caring for these patients. Being aware of the risks these patients face will help providers give better care.
21.	Rice, Y. (2016).	To determine if the program would improve knowledg e, satisfactio n, self- confidenc e, and simulated team performan ce.	None mentioned	Pre- post-test design Level I trauma center. Conveni ence sample of 7 nurses with BSNs, 21 years old and with less than 2 years of ICU and nursing experien ce.	IV simulation- learning environmen t that allows for hands on education without risk to patients. DV1 knowledge DV2 satisfaction DV3 self- confidence DV4 simulated team performanc e	DV 2& 3 Student Satisfaction and Self-Confidence in Learning Survey DV4 TTPOT and T-TAQ Descriptive statistics, paired t-tests, means	followed by sepsis (p= <0.001) and DVT (p <0.001). Obesity was associated with complications (95% CI 1.2-1.6). Simulations helped improve team structure (p=.0001) and communication (p=.009). Observed scores for situation monitoring (p=0.000), mutual support (p=.000), and communication (p=.001) improved as well. Overall, participants were satisfied (mean 21.5 of a total 25). Self-confidence was rated high as well with a mean of 38.83 of 40 possible points. Attitudes of mutual support (p=0.04) and communication	III Use of multiple validated tools/small sample size, single center, convenience sample This is a feasible study as it is very similar to my DNP project. Simulation for training trauma ICU nurses improved participants attitudes, perceptions, and performance of teamwork, and participants found the course improved their self-confidence in trauma care. I recommend this study to those

22. Sharoky , C.E. (2019	To validate single-site findings of the location and timing of FTR events using a statewide trauma registry.	None mentioned. 30 Level I and II PA trauma centers. Patients >16yrs with a minimum AIS of 2 or higher. A total of 15,388 patients were reviewed.	Retrosp ective observat ional study	IV FTR defined as death after a complicatio n. DV1 location where patient was in their stay when FTR occurred. DV2 timing, how far patient was into their hospital stay when the FTR	DV1 & 2 time and unit were abstracted from charts. Descriptive statistics, Kruskal-Wallis, chi-squared, Mann-Whitney,	(p=.001) were decreased after simulation. Median age of FTR was 58 (P<0.001). Most had suffered blunt trauma (89%) and had a higher injury burden (p<.0001). The highest number of inpatient FTR cases occurred in the ICU (63%) when compared to other hospital units. Respiratory and cardiac issues were the two most common complications leading to FTR. Death, or FTR, typically occurred	working in trauma; however, the study needs to be replicated to further support the findings as the sample size was only seven nurses. III Large sample size, 30 sites involved, use of trauma registry/retrospective design, use of registry that could have data entry errors, does not include death after discharge Patients who experienced FTR were more likely to do so early in their hospital stay while in the ICU. This is a relevant study and can help trauma programs focus efforts to
23. Hustad, J.(2019)	To explore nursing students' experienc es of simulation -based training and how the students perceived the transfer	None mentioned.	Qualitati ve descripti ve design, Focus group intervie ws Purposi ve samplin g was used. 32 student nurses at a Norwegi an Universi ty	event occurred. Simulation- one week program done before entering clinical practice DV Transfer of learning interview guide using 3 open- ended questions	Eight focus group interviews were done. Transcribed interviews were analyzed by the authors using Braun and Clarke's six step- by-stp guide for thematic analysis. Initial codes were developed then the first author read the material searching for themes. Then all authors searched for themes and related them to the codes. Authors met	early in the hospital course, usually in the ED or OR (p<0.0001). Simulation was shown to improve self-confidence, clinical skills and judgement, and emphasis the importance of communication and team collaboration. Students felt the simulations mentally prepared them for clinical by bridging the gap from theory to practice. They also found that the simulations made them more aware of how importance an assessment with	prevent FTR at the time and location with the population most at risk which could improve patient outcomes. II Open-ended questions/small sample size, single center, volunteered This is a feasible study design and one that can be quite useful in determining the value of an educational program to the student. Overall, simulations not only improved students' self- confidence, it also helped them put into practice what they had only learned in books. Thus making them more prepared

				voluntee red.		discuss findings, revise, define, and name themes. Descriptive statistics, percentages, thematic analysis,	closed loop communication and SBAR was found to be an important part of student communication after taking part in the simulations.	to enter their clinical rotations.
24.	Parihk et al., 2022	To evaluate if simulation -based education and debriefing using a CPR feedback device would improve CPR performan ce on an infant manikan in NICU nurses.	None mentioned	Single center prospect ive, observat ional simulati on study. 62 NICU nurses at the Children 's Hospital of San Antonio , TX	IV simulation based education and debriefing DV1 chest compressio n rate, depth, fraction, and recoil DV2 confidence level	Chi squared for categorical variables. Variables without normal distribution were reported in median with IQR. Median and IQR were done for depth, rate, fraction, and recoil. Paired t- test for pre and post debriefing depth, rate, fraction, and recoil. Wilcoxon rank sum test compared pre and post simulation confidence levels. Significance was set at p <0.5.	Significant improvement in depth and fraction but no difference in rate and recoil. Significantly higher confidence levels in all CPR dynamics when comparing pre to post simulation and debriefing.	Weakness: No comparison group to determine if the simulation and debrief was the main reason for the skill and confidence improvements. Small sample size, single center, lack of real time feedback on performance. Confidence survey was not a validated tool. Strengths: Two independent reviewers with a moderator to resolve any disputes in scoring. Followed NRP/PALS guidelines. Use of CPR feedback device for objective measurement. Simulation can be an effective way to improve skill competence and learner confidence.
25.	Karatas & Tuzer, 2020	To investigat e the effect of training using a standardiz ed patient on the self- confidenc e and satisfactio n of the	None mentioned	Sem- experim ental design. Universi ty nursing students in Turkey taking the surgical diseases	IV standardize d patient simulations DV1 self- confidence DV2 satisfaction	Shapiro Wilk test evaluated if the variables had normal distribution. Number and percentage values were presented for frequency distributions. Mean, standard deviation, and other descriptive statistics used for	Post-test scores significantly higher (p ,0.05) than the pre-test and the students' self- confidence and satisfaction scores had a significant relationship (p <0.05)	Weakness: There was no comparison group to determine if the effects seen were a direct result of the IV. Lack of formal debrief model. Strengths: Used the NLN's validated tool Student Satisfaction and Self-confidence Scale in Learning, the knowledge test,

		students when caring for a patient under contact isolation.		in nursing course spring semester of 206- 2017		distribution of scores. Pearson's Correlation Coefficient evaluated the correlation between normally		debriefing forms, and student evaluation guidelines were based on current literature/evidenced- based practice and corrections were
				academi c year. Of 125 students ,30 took part in the study.		distributed variables. Significance was set at a p<0.05 The power analysis used a 95% CI, 84% theoretical power and 0.5 effect size.		made for content validity based on recommendations of three content experts. Data collection tools were evaluated by a measurement and evaluation specialist. Training using simulations, standardized patients, debriefing significantly improved student's knowledge, self- confidence and satisfaction.
26.	Jyoti et al., 2021	Evaluate the effectiven ess of simulation -based training vs. traditional method of teaching on the retention of birthing care knowledg e and skills.	None mentioned.	Quantita tive approac h with compara tive research design. 77 BSN 4 th year students From SGT Universi ty Gurugra m and R.R. College of Nursing Gururgr am	IV simulation- based training DV traditional method DV2 knowledge DV3 skills	Descriptive and inferential statistics were used with significance set at a p <0.05	Simulation group had significantly higher scores for both knowledge and skills than the traditional method group when teaching birth care to nursing students.	Weakness: No mention of study limitations. Data analysis could have been more robust. Literature review was very minimal. Experimental group was tested 2 days before control group, so there could have been sharing of information between groups which would have skewed the results. Strength: Structured knowledge test and checklist were done by self-administration and observation. Reliability of the tools was determined using Karl Pearson's coefficient of correlation method. It was found to be 0.77
								superior in improving knowledge and skills

27.	Kim & Shin,	To identify	Nursing Process	Equival ent	IV nursing process-	Percentages, Chi squared test,	There was no difference on all	when compared to traditional educational methods. Provided new knowledge related to the use of the nursing process as a simulation framework. Overall, there was no difference between the two groups except in neonatal diagnosis and evaluation, and maternal care diagnosis. However, this study presented a new way to use the nursing process as a framework for simulation-based training. Further study is warranted in broader groups of nursing care. Weakness: small sample size,
	2016	the effects of nursing process- based simulation on knowledg e, attitudes, and skills for maternal and child emergenc y nursing care in clinical nurses in South Korea.		control group pre- and post-test experim ental design 49 nurses from the Korean Nurses Associat ion and the Seoul Nurses Associat ion of Korea.	based simulation training program for high-risk maternal and child emergency care DV1 Knowledge DV2 attitudes DV3 emergency care skills	Fisher's exact test, t-test.	pre-test measures between the control and experimental groups. The experimental group showed statistically significant improvement in all areas of knowledge, skills, and attitudes from pre to post test. The control group did just as well except in the areas of diagnosis and evaluation in the area of neonatal emergency care, and diagnosis in the maternal emergency care areas.	Strengths: use of a control group, study instrument had the content validity tested by to physicians and two head nurses from a NICU, two physicians and two head nurses working in the delivery room, one nursing professor who teaches maternal and child nursing, one nursing professor who teaches maternal and child nursing, one nursing professor who teaches pediatrics, and one simulation expert. Cronbach alpha coefficient ranked .7375. Same for the knowledge test, attitude questionnaire, and skills checklist, which Cronbach alpha coefficient

 Kahram an et al., 2019	To examine the effect of training given to nursing students using simulation and standard child mannequi ns on their		Quasi- experim ental, randomi zed controll ed study with a pre- test/post -test	IV simulation mannequins DV1 standard child mannequins DV2 epilepsy and	Mean, standard deviation, median, minimum, and maximum values for numerical data. Frequency and ration values for categorical	Both groups had statistically significant (p <0.001) improvement in the knowledge test from pre to post but there was not significance between the groups	and .84 respectively. Weakness: No mention of the validity of the knowledge and attitude scale by Aydemir et al. or the skills list by Gozen et al. that was used. No mention of who or
	childhood epileptic seizure managem ent knowledg e, skills, and attitudes.		design. 80 third year students enrolled in the Child Health and Diseases Nursing Program in the 2017- 2018 academi c year.	epileptic seizure managemen t knowledge DV2 epilepsy knowledge and attitudes DV3 epileptic seizure managemen t skills	data. McNemar's test. RM- ANOVA, t-test, Pearson's correlation coefficient, and Pearson's chi- squared.	(p=0.829). For attitudes the experimental group had significant improvement (p=.008) when compared to the control group from pre to post test. Within groups, there was significant increase in confidence (p=0.000) from pre to post test.	how the simulation scenarios were developed. The skills are not reported in the results section with numerical data. All data is reported in a table. There is no breakout of control vs experimental in the table as well. Strengths: Experiment design is higher level of evidence. Had a comparison group. Both methods had a positive effect on knowledge gain, however, the simulation mannequin group had a significant improvement in attitudes/confidence in caring for an epileptic patient that the group using a standard mannequin. Therefore, simulation mannequins are a more effective method for improving attitudes and confidence in nurses.
Hsu, Chang, & Hsieh, 2015	To compare the effect of a traditional	None mentioned	RCT adopted with a pre-test and two	IV scenario- based simulation training	Descriptive statistics, Mann- Whitney U, Pearson chi squared test, Fisher's exact	Communication and self-efficacy scores were significantly improved (t63) in the experimental group than the	Weakness: sample size did not meet power, lack of reliability of assessment tools, single center study.

	1	1	1	1	1			
		based		Conveni	DV1	test. ANCOVA, t-	The same was found	There is no mention
		simulation		ence	traditional	test, paired t-test,	for self-efficacy	if interrater reliability
		training		sample	training		with a t (63) for the	was established
		on nurses'		at a	DV2		experimental group	between the
		communic		medical	communica		and t (51) for the	independent raters
		ation		center in	tion		control. Independent	and standardized
		training in		Taipei	DV3 self-		raters and nurses	patients.
		early		City,	efficacy		found the	
		stages of		Taiwan.			simulations to be	Strength: study
		nursing		Nurses			more effective while	design, Cronbach's
		career.		on the			the standardized	alpha was determined
				clnical			patients found no	for all the
				ladder,			difference in	measurement tools.
				willing			communication	
				to take			between the two	Simulation-based
				part, and			groups. The average	training has positive
				involved			communication	effect on nursing
				in direct			competency scores	communication and
				patient			were significantly	self-efficacy when
				care. Pre			higher (t66.13) than	compared to
				n=116			the control. The	traditional training
				post			same was found for	methods. While not
				n=78			the self-efficacy	all areas studied
				n 70			scores. Mean global	showed significant
							ratings had no	improvement,
							statistical difference	simulation seemed to
							between groups or	be more effective and
							with the standard	enhanced the learning
							patients.	experience.
30.	Hegland	То	Cochrane	Systema	Had to be a	Quantitative	Simulation-based	Weakness: low
50.	, Aarlie,	evaluate	Collaboratio	tic	RCT study	synthesis using	training had a	quality grading of
	Stromm	the effect	n Risk of	review	evaluation	meta-analysis,	positive impact	evidence so
	e, &	of	Bias Tool.	and	effects of	narrative	(p<0.0007) on skills	confidence in
	Jamtved	simulation	Guideline	meta-	simulation-	synthesis if meta-	when compared to	findings is low.
	t, 2017	-based	development	analysis,	based	analysis was not	other learning	Narrow inclusion
	ι, 2017	trainig on	tool	RCT	training for	possible.	methods.	criteria, potential bias
		nurses'	1001			Standardized		from authors
		skills and		studies 15	graduated		Knowledge had no significant	nom autions
		knowledg			nurses or	mean difference,	difference between	Strengths: systematic
		U		studies	graduated	Risk ratio, 95% CL L^2 statistics p		review and meta-
		e		were	nurses in	CI, I ² statistics, p- value	groups (CI -2.28 to -	
				included	continuing	value	1.08). Comparison of	analysis, used of
					education.		Comparison of	validated tools to
					Skills		methods was	reduce bias and grade
					and/or		inconclusive. High	quality of evidence,
					knowledge		fidelity simulation	literature search
					had to be		was more effective	process very
					the primary		(p < 0.0001) than	thorough
					outcomes.		CD-rom. The	
					Had to be		remaining results	The review found no
					in English,		were all	clear result due to
					German,		inconclusive and the	low grade of the
					Norwegian,		quality of evidence	evidence and mostly
					Swedish, or		was low grade for	inconclusive
					Danish.		all areas reviewed.	information.
								However, simulations
								tend to be a
								tend to be a

31	Said et	Evaluatio	None	Quaci	IV	Descriptive	Significant	significantly more effective training method for most areas of nursing education. Weakness:
31.	Said et al., 2021	Evaluatio n of simulation effects on maternity nurses' knowledg e, practice, and self- efficacy during managem ent of eclamptic fits	None mentioned	Quasi- experim ental Obstetri cs and Gynecol ogy departm ent at Benha Teachin g Hospital Conveni ence sample of 40 nurses from the OBGY N dept.	IV simulation DV1 Knowledge DV2 practice DV3 self- efficacy	Descriptive statistics, paired t-test, chi- squared, Pearson correlation coefficients,	Significant ($p<0.001$) improvement in knowledge when comparing pre to post and 8-week post intervention for side effects of mag sulfate, symptoms of mag sulfate toxicity, antidote use for mag sulfate toxicity, and respiratory decline. There is significant improvement for maintenance dosing of mag sulfate pre to immediate post ($p<0.05$) and for initial dose of mag sulfate and deep tendon reflexes between pre to 8 weeks post ($p<0.05$). Practice and self-efficacy had a highly positive correlation at immediate post and 8 weeks post, as well as knowledge and self-efficacy at the 8 week post, and self-efficacy and practice at immediate post and 8 weeks post.	Weakness: observational checklists does not mention how or what the checklist included, does not mention the validity of the self-efficacy scale used by Christian and Krumwiede, single center, small sample size, narrow focus of OBGYN nurses Strengths: study design, used self- efficacy scale by Christian and Krumwiede, assessed Cronbach's alpha on the tools used, knowledge 0.856, practice 0.869, and self-efficacy 0.879. Piloted the tools prior to the study implementation. Simulation is an effective teaching method that improves the learner's knowledge retention, practice level, and self-efficacy related to eclamptic fits in the pregnant patient.
32.	Orsi et al., 2020	To evaluate factors associated with anxiety and the effect of simulation -based	None mentioned	Longitu dinal observat ional study with 4 th year medical students during	IV simulation DV1 anxiety DV2 self- confidence DV3 learning satisfaction	Student t-test, Pearson correlation coefficient, Cronbach's alpha	Students were more anxious about the pelvic exam than the breast exam (p<0.001). Females were worried about hurting the patient whereas males were anxious because they would make	Weakness: small sample size, single center, no comparison group, methods not very robust Strength: Determined internal consistency of the assessment

		training		their			the patient	tools used to measure
		on student		OB/GY			uncomfortable and	outcomes and
		anxiety,		N N			because they had	showed good
		self-		clerkshi			never done a pelvic	reliability and
		confidenc		p at a			or breast exam	internal consistency
		e, and		p at a Universi			before. Both scores	in all the domains
		learning		ty in			for pelvic and breast	being tested.
		satisfactio		Brazil.			exam anxiety	being testeu.
		n in		n=80			dropped	Simulation-based
		relation to		n=80			significantly	training helps lower
							(p<0.001) from pre	learners anxiety
		pelvic and						
		breast examinati					to post. Students had significant	while improving their self-confidence and
								satisfaction when
		on.					improvement in self-confidence and	
								performing pelvic and breast exams.
							satisfaction from pre	and breast exams.
33.	Hamman	Ta	TeamSTEPP	Due ou o ot	IV Trauma	Manna standard	to post as well.	W/1
33.	Harvey,	To	S model	Prospect		Means, standard deviations, and	Confidence scores	Weakness: no mention of validity of
	et al., 2019	explore whether	5 model	ive,	academy including	ranges. Paired t-	of trauma nurses improved	knowledge test,
	2019	additional		quasi- experim	simulation	tests, two factor	significantly	TNCC TNP skill
		improvem		ental	DV1	ANOVA,	(p<0.001). There	assessment tool, or
		ents are		pre/postt	Knowledge	ANOVA, ANOVA,	was no difference	RN confidence
		observed		est	DV2	descriptive	between the nurse	survey, single center,
		with			teamwork	statistics, chi-		convenience sample,
		advanced		interven tion	perceptions	squared,	group and resident group or within	raters not blinded to
		trauma			DV3 team	nonparametric	groups over time for	the study, no mention
		training in		design, ACS	performanc	Kruskal-Wallis	teamwork	of interrater
		compariso		verified	e	test	perceptions. For	reliability being done,
		n with		Level I	e	1051	team performance,	changes in policies,
		prior		trauma			total scores were	resident rotations,
		interprofe		center.			highest at 6 months	and high census
		ssional		Conveni			post training that pre	could be
		teamwork		ence			and 12 months post	confounders.
		studies		sample			(p=.0011). There	comounders.
		conducted		of			was a drop in total	
		in the		nurses			scores at the 12-	Strength: study
		same		attendin			month post period	design, internal
		setting.		g the			that declined below	consistency reported
		setting.		trauma			the pre intervention	for Brief T-TPQ and
				academ			scores.	TPOT. Use of
				y and			Communication	validated tools.
				general			scores were	Ongoing evaluation
				surgery			significant at both 6-	of tools and
				and			and 12-months post	TeamSTEPPS model
				emergen			(p=0.006, p=0.04).	at same hospital with
				cy			Patient outcomes in	same group for over
				medicin			the trauma bay were	6 years.
				e			significantly	- <i>J</i>
				resident			improved in the	Use of TeamSTEPPS
				practicin			areas of time to	as a model to train
				g on			eFAST at 12 months	emergency nurses in
				trauma			(p=0.0071)	trauma resuscitation
				during			compared to pre and	utilizing high stakes
				the			6 months post.	simulation improves
				study			- monuto post.	nurses self-
L	L	1	1	Stady	1	1	1	

	period.	confidence, team
	No	attitudes and team
	mention	performance,
	of	however, the decline
	sample	of certain studied
	size	domain at 6 months
		suggests that training
		should occur twice a
		year to maintain
		gains seen with the
		initial course.

Appendix B

Informed Consent Letter

You will be participating in a pilot course for nurses caring for trauma patients. You have been selected because you are a nurse caring for trauma patients at Carilion Roanoke Memorial Hospital on the Neuro-Trauma or Surgical Progressive Care Units for less than three years. The purpose of the study is to determine is simulations impact nurses' knowledge, skills, and confidence levels, and unplanned ICU admissions related to trauma patients. The study findings will then be used to determine if this course will become a trauma education orientation course for all new nurses that care for trauma patients.

The course itself will include a mix of simulations and lecture. The research study includes a 10question test and a 13-question confidence level survey that will be emailed before and after the course and at 30, 60, and 90 days after the course. A demographic questionnaire will be sent before course attendance as well. All tests and surveys will be administered via REDCap® and will remain confidential. Completion of the survey and test should take about 20 minutes.

Please complete the survey and test as soon as you can. Your participation in taking the tests or answering the surveys is completely voluntary. You will not be penalized if you decide not to take part or if you decide to stop participating in the tests or surveys. The on-line completion of the tests and surveys is considered your consent to participate in the study.

This study has minimal to no risk to participants. Your survey will be confidential. Data related to the survey will be kept on a secure server and reported in aggregate. No identifying information will be collected.

You will not receive any direct benefit if you agree to participate. However, your participation may positively impact practice and lead to improved patient outcomes at CRMH. This information may also contribute to research so that others can learn from the experiences here at CRMH.

Federal regulations allow Carilion Clinic to release limited information about you to researchers at Carilion so that we may contact you regarding studies that might be of interest to you. We want to assure you that we will keep your information confidential.

If you are interested in learning more about the study, please contact Jennifer Bath Clinical Nurse Specialist for Trauma 540-537-1193. If you have questions about your rights as a research subject, you may contact staff at the Carilion IRB at 540-853-0728.

Appendix C

Demographic Data

1.	Age (in years)
2.	Gender
	MaleFemaleOtherPrefer Not to Answer
3.	Years as a nurse
4.	Years as a nurse in your current unit
5.	Highest nursing degree
	LPNDiplomaADNBSNMSNDNP/PhD
6.	Do you have prior experience caring for trauma patients?
	YesNo
	If yes, how many years?
7.	Have you had previous trauma education?
	YesNo
Q	Nursing Cortifications
0.	Nursing Certifications
	PCCNCCRNTCRNOther

Appendix D

Trauma Boot Camp Knowledge Evaluation Tool

- 1. A patient has a chest tube with orders for it to be on -20 mmH2O of suction. You determine the suction rate is correct by looking at
 - a. The bellows on the Atrium.
 - b. The water level in the Atrium.
 - c. The drainage on the Atrium.
 - d. The suction cannister.
- 2. A patient on the Carilion bladder protocol had a scan of 300ml at 0800. What is your next action?
 - a. In/out cath the patient
 - b. Rescan in 2 hours
 - c. Rescan in 4 hours
 - d. Discontinue the protocol
- 3. A C3 level spinal cord injury patient has a blood pressure of 200/120, nasal congestion, and flushing above the nipple line indicating autonomic dysreflexia. Which of the following could be the cause?
 - a. A bowel movement today.
 - b. A bladder scan of 640ml.
 - c. Turn and position every 2 hours.
 - d. Head of bed greater than 45 degrees.
- 4. A patient with a chest tube to water seal now has a respiratory rate of 32 and absent lung sounds on the same side. What do you anticipate the doctor will order?
 - a. Place the patient on oxygen
 - b. Remove the chest tube
 - c. Put the HOB up to 90 degrees
 - d. Place the chest tube on suction
- 5. A traumatic brain injury patient is quite agitated despite having ruled out potential causes such as urinary retention, constipation, and pain. Which of the following may help reduce their agitation?
 - a. Turning the lights off
 - b. Turning the TV on
 - c. Opening the blinds
 - d. Using restraints

- 6. You are told in report that your patient with a traumatic subdural hematoma has been a GCS 15 and following commands all shift. On your exam, they are now a GCS 14 and only following commands occasionally. What is your next step?
 - a. Order at CT scan of the head
 - b. Continue to monitor the patient
 - c. Page stroke team to see the patient
 - d. Page neurosurgery to see the patient
- 7. A patient with rib fractures is now complaining of increased shortness of breath. You ask them to use the incentive spirometer and they only pull 500 when they were pulling 1500 a few hours ago. Lung sounds are present bilaterally but are now diminished. O2 sat is 95% on room air. What is your next step?
 - a. Page the trauma team
 - b. Order a chest Xray
 - c. Reassess in an hour
 - d. Put the patient on oxygen
- 8. A patient with a traumatic brain injury is on the bladder management protocol. They have had two bladder scans of <100 ml in a row. Your next step is to:
 - a. Discontinue the bladder protocol.
 - b. Notify the provider of low volumes.
 - c. Insert a urinary catheter per protocol.
 - d. Start doing daily in/out caths
- 9. A spinal cord injury patient has their urinary catheter removed. The proper bladder regimen for a spinal cord injury is to
 - a. Use the bladder protocol.
 - b. Straight cath every 4 hours.
 - c. Bladder scan daily.
 - d. Straight cath daily.

10. Which of the following is NOT part of a neuro exam?

- a. GCS
- b. AVPU
- c. Pupils
- d. CIWA

Appendix E

Confidence Evaluation Tool 1. Student Satisfaction and Self-Confidence in Learning

Instructions: This questionnaire is a series of statements about your personal attitudes about the instruction you receive during your simulation activity. Each item represents a statement about your attitude toward your satisfaction with learning and self-confidence in obtaining the instruction you need. There are no right or wrong answers. You will probably agree with some of the statements and disagree with others. Please indicate your own personal feelings about each statement below by marking the numbers that best describe your attitude or beliefs. Please be truthful and describe your attitude as it really is, not what you would like for it to be. This is anonymous with the results being compiled as a group, not individually.

Mark:

1 = STRONGLY DISAGREE with the statement

2 = DISAGREE with the statement

3 = UNDECIDED - you neither agree or disagree with the statement 4 = AGREE with the statement

5 =STRONGLY AGREE with the statement

Satisfaction with Current Learning	SD	D	UN	A	SA
1. The teaching methods used in this simulation were helpful and effective.	1	2	3	4	5
2. The simulation provided me with a variety of learning materials and activities to promote my learning the medical surgical curriculum.	1	2	3	4	5
3. I enjoyed how my instructor taught the simulation.	1	2	3	4	5
4. The teaching materials used in this simulation were motivating and helped me to learn.	1	2	3	4	5
5. The way my instructor(s) taught the simulation was suitable to the way I learn.	1	2	3	4	5
Self-confidence in Learning	SD	D	UN	A	SA
6. I am confident that I am mastering the content of the simulation activity that my instructors presented to me.	1	2	3	4	5
7. I am confident that this simulation covered critical content necessary for the mastery of medical surgical curriculum.	1	2	3	4	5
8. I am confident that I am developing the skills and obtaining the required knowledge from this simulation to perform necessary tasks in a clinical setting	1	2	3	4	5
9. My instructors used helpful resources to teach the simulation.	1	2	3	4	5
10. It is my responsibility as the student to learn what I need to know from this simulation activity.	1	2	3	4	5
11.I know how to get help when I do not understand the concepts covered in the simulation.	1	2	3	4	5
12.I know how to use simulation activities to learn critical aspects of these skills.	1	2	3	4	5
13.It is the instructor's responsibility to tell me what I need to learn of the simulation activity content during class time	1	2	3	4	5

© Copyright, National League for Nursing, 2005 Revised December 22, 2004

Appendix F

Course Evaluation

Please rate **<u>your level of satisfaction</u>** with this training by placing a number on each line below. *Please use the scale provided.*

12345Very DissatisfiedDissatisfiedNeutralSatisfiedVery Satisfied

____ The course met its stated objectives.

____ The course format was effective.

The course faculty was knowledgeable.

I would recommend this course to others.

As a result of this course, I am now better prepared to

_____ troubleshoot a chest tube

_____ use the bladder management protocol

____ perform a neurological exam

_____ teach a patient to use incentive spirometry

____ document interventions and assessments in EPIC documentation

____ communicate with the team

Ideas for future training topics_____

Comments:

Appendix G

Simulation Lab Course Evaluation Tool

Course: Inpatient Trauma Bootcamp Date: February 3, 2022 Faculty Instructor: Jen Bath Simulation Education Facilitator: Amanda Anderson

SELF EVALUATION

BASED ON THE FOLLOWING LEARNING OBJECTIVES, PLEASE RATE YOUR CONFIDENCE LEVEL **BEFORE** THE SESSION TODAY:

	1 Very Low	2 Low	3 Moderate	4 High	5 Very High	N/A Not Applicabl e
Your ability to recognize						
deterioration in a trauma patient						
Your ability to perform relevant						
assessments on the deteriorating						
trauma patient						
Your ability to intervene						
appropriately for a deteriorating						
trauma patient based on assessment						
findings						
Your ability to describe the bladder						
management protocol and how it						
differs for spinal cord injury						
patients						

BASED ON THE FOLLOWING LEARNING OBJECTIVES, PLEASE RATE YOUR CONFIDENCE LEVEL **AFTER** THE SESSION TODAY:

	1 Very Low	2 Low	3 Moderate	4 High	5 Very High	N/A Not Applicabl
						e
Your ability to recognize						
deterioration in a trauma patient						
Your ability to perform relevant						
assessments on the deteriorating						
trauma patient						
Your ability to intervene						
appropriately for a deteriorating						
trauma patient based on assessment						
findings						

Your ability to describe the bladder management protocol and how it differs for spinal cord injury patients PLEASE INDICATE YOUR LEVEL OF AC	REEMENT WI	TH THE FOL	LOWING STATE	MENTS REG	ARDING YOUR	SESSION
TODAY:						22001011
	SIMULATIC 1	<u>DN STAFF</u> 2	EVALUATION	<u>N</u> 4	5	N/A
	Very Low	Low	Moderate	4 High	Very High	N/A Not Applicabl e
I would recommend simulation training sessions to my colleagues						
Overall, I was satisfied with the service provided by the simulation center staff						
The support I received during the simulation session met my expectations						
I benefit from being able to learn in an environment in which I can make mistakes						
I feel more confident in my ability to care for real patients using the skills I learned today.						
Debriefing contributed to my learning.						
Learning at the simulation center is useful for my training/profession						

	FACULTY EVALUATION											
	1	2	3	4	5	N/A						
	Very Low	Low	Moderate	High	Very High	Not						
						Applicabl						
The instance of a second by secole described						e						
The instructors were knowledgeable												
about the subject matter that was												
taught												
The instructors provided a safe,												
non-threatening learning												
environment												
The facilitator was on time and												
prepared for the simulation												
experience												

I feel more cor interventions the safety. There was a go hands on and the	hat foste bod balar heoretica	r patient nce betwee al learning	n	CTT			VXOUV		D179			DCI			TIAT		
Communication Skills		Skill Con					Y YOU WORK? PLEASE CI hip Skills Teamwork Skills				Confidence Level						
SKIIIS					DE	M	OGRAI	рнт	CS								
PLEASE IDENTI	FY YOUR	CURRENT P	ROFE	SSION													
PROFESSION	NURSE	MD/DO	P	A	NP		RRT	ME	DIC	RESIDE	E FEI	LOW	N	A	XRA	Y	OTHER
						T								_			
Please explain	if other:			I													
How many yea	ars of exp	perience de	o l														
you have in yo																	
LEVEL				PGY1			PGY2		PGY3 P		P	PGY4		PGY5+		5+	
If you are a res	sident, id	entify you	r														
year of training																	
If you are a stu	dent ind	icate your															
current year in	program	1															
Did today's se									YE	-					N	0	
What else wo	uld you	like to say	abo	ut toda	ay's si	mu	ilation e	xpe	rienc	e?							
						-			_								
What other sime	ulation de	o you think	woul	d be va	luable	for	your lea	rning	j ?								

Appendix H

Simulation Scenarios & Skill Evaluation Tool

Boot Camp Rib fx/IS Case

Performance Assessment Form

Name of Rater: _____ Date of rating: __/__/

Rate the performance of the learner using the scale below. Place the score in the HIT column.

- **1** = Observed/Performed correctly
- **0** = **Omitted/Failed** to perform correctly

X = No opportunity to perform/not required during the scenario

Simulated Event	Targeted Clinical Response	Hit
BRIEF		
75-year-old female fall from standing with bilateral rib	Assess AVPU	
fractures (left 3-5, right 4-5) with PMH of COPD, DM, and HTN.	Assesses airway patency	
Handoff Report		
GCS 15		
BP 143/76		
HR 68 A-fib		
RR 22		
T 97.2 oral Pox 96% on RA		
Incentive spirometry (IS)		
1500ml		
Weight 62 kg		
Height 5'3" (64 inches)		
Morning assessment		
Pox now 88% on RA		
GCS 15 but restless		
T 100.3 oral		

Simulated Event	Targeted Clinical Response	Hit
-----------------	----------------------------	-----

Patient alert but restless.		
Airway patent.	Assesses breathing by listening to lung sounds	
	Checks respiratory rate	
	Checks pulse oximetry	

Simulated Event	Targeted Clinical Response	Hit
Lungs sounds		
clear but diminished bilaterally	Places patient on 2 L Oxygen via NC	
RR 28	Has patient deep breath and cough	
Pulse ox 88% on RA	Instructs patient on proper mechanics for IS	
	Have patient perform IS	
	Determines IS target based on patient weight.	

Simulated Event IS target=1950. IS now 500 ML. (Was	Targeted Clinical Response	Hit
1500 ML previously)	Finds previous IS documentation in EPIC	
1500 ML previously)	Identifies significance of IS volume differences	
	Pages provider	

Simulated Event	Calls RRT	
Provider does not answer	Gives SBAR report to RRT team	
page		
RR 32, Pox 86% on 2 L O2		

Simulated Event Team performance	Targeted Clinical Response	Hit
	Team demonstrates mutual support and situational awareness during scenario.	

Simulated Event	Targeted Clinical Response	Hit
DEBRIEF		
Teamwork and Safety review		

Participates in situational debrief and identifies	
improvement strategies.	

Total Hits _____

Notes:

Boot Camp Chest Tube	Performance Assessment Form	
Name of Rater:	Date of rating://	

Rate the performance of the learner using the scale below. Place the score in the HIT column.

1 = Observed/Performed correctly

0 = Omitted/Failed to perform correctly

X = No opportunity to perform/not required during the scenario

Simulated Event	Targeted Clinical Response	Hit
58-year-old male fall from roof	Auscultate lung sounds	
with left rib fractures 4-8 and a hemothorax.	Assess chest tube insertion site/dressing	
	Palpate for subcutaneous emphysema	
Handoff Report GCS 15	Check bellows	
BP 132/58 HR 74 NSR	Check drainage chamber	
RR 24 T 98.9 oral	Check for air leak/tidaling	
Pox 96% on RA	Check suction dial on atrium	
Incentive spirometry (IS) 1000ml	Check suction connection on atrium	
Lungs clear and equal Chest tube left chest to - 20cmH2) continuous suction	Check suction connection on wall regulator	
Morning assessment Pox now 90% on RA		
GCS 15 Lung sounds absent on the left, clear on the right. Asymmetrical		
chest wall movement.		

Simulated Event	Targeted Clinical Response	Hit
Suction connected to atrium and		
wall but wall suction not turned		
on.	Remove tubing off the water seal to relieve the tension.	

Simulated Event		
Lung sounds on left now	Pages provider regarding chest tube issue and output.	
present but diminished.	Provides SBAR report to team.	
RR 24		
Pox 96% on RA		
Chest tube dumps 300ml blood		
into chamber.		

Simulated Event Team performance	Targeted Clinical Response	Hit
	Team demonstrates mutual support and situational awareness during scenario.	

Simulated Event DEBRIEF	Targeted Clinical Response	Hit
Teamwork and Safety review		
	Participates in situational debrief and identifies	
	improvement strategies.	

Total Hits _____

Notes:

Boot Camp TBI/Neuro	Performance Assessment Form

Name of Rater: _____ Date of rating: __/__/

Rate the performance of the learner using the scale below. Place the score in the HIT column.

1 = Observed/Performed correctly

0 = Omitted/Failed to perform correctly

X = No opportunity to perform/not required during the scenario

Simulated Event BRIEF	Targeted Clinical Response	Hit
25-year-old male, unrestrained driver of an MVC. Admitted with SDH 3 days ago. Currently	Nurse assesses patient's AVPU Determines patient only responsive to Pain	
on PCU floor. 0730 assessment	Calls RRT	
PERRL GCS 15 and alert BP 125/67 HR 78 NSR RR 16	Checks airway for patency using jaw thrust Inserts oral airway.	
T 97.6 oral pOx 98% on RA		
1030 NA calls nurse to go see patient because they "aren't acting right". Vitals BP 158/87 HR 98 NSR RR 24		
Pox 95% on RA		

Simulated Event Airway is patent.	Targeted Clinical Response	Hit
	Assesses breathing by listening to lung sounds	
	Checks respiratory rate	
	Checks pulse oximetry	

Simulated Event RR 12, Pox 88% on RA Lungs clear on auscultation	Targeted Clinical Response	Hit
	Places patient on oxygen Assesses circulation by checking radial pulse rate and	
	rhythm	
	Assesses skin, color, and temp Assesses IV access	

Simulated Event	Targeted Clinical Response	Hit
Patient has 1 20 g saline lock		
in place.		
Radial pulses present. HR 110 sinus tach no ectopy	Inserts another IV and draws blood	
Skin pink, warm, and dry.	Prepares IV fluids to be hung when ordered by RRT.	
	Assesses disability by checking GCS	
	Assesses disability by checking Pupils	
	Assesses disability by checking blood glucose	

Simulated Event	Targeted Clinical Response	Hit
GCS 11 (E2 V3 M6) Responds		
to pain, mumbles inappropriate		
words, following commands	RRT arrives	
but not able to move left side.		
Pupils Left non-reactive, right	SBAR handoff given to RRT team.	
sluggish.		

Simulated Event Teamwork	Targeted Clinical Response	Hit
	Team demonstrates mutual support and situational awareness during scenario.	

Simulated Event	Targeted Clinical Response	Hit
Team Performance and safety		
considerations		
	Participates in situational debrief and identifies	
	improvement strategies.	

Notes:

Total Hits _____

Boot Camp SCI Bladder	Performance Assessment Form

Name of Rater: _____ Date of rating: __/__/__

Rate the performance of the learner using the scale below. Place the score in the HIT column.

1 = Observed/Performed correctly

0 = **Omitted/Failed** to perform correctly

X = No opportunity to perform/not required during the scenario

Simulated Event BRIEF	Targeted Clinical Response	Hit
32-year-old male GSW to neck with complete SCI at C5 level. Urinary catheter removed at 0800 this morning.	Nurse reviews chart for last BM and void	
Orders Straight cath q 4 hours. If patient spontaneously voids, follow the bladder management protocol order set for scan volumes		
1300 Patient with nasal congestion, flushing above the nipple line and BP 200/123		

Simulated Event Last BM this morning.	Targeted Clinical Response	Hit
Incontinent of urine at 1100.		
	Nurse performs bladder scan	

Simulated Event Bladder scan 650	Targeted Clinical Response	Hit
	Nurse straight cath's patient	

Simulated Event	Targeted Clinical Response	Hit
Straight cathed for 800 ml		
Patient's BP now 150/87,		
flushing resolved.	Nurse identifies that straight cath to be done at 1700 unless patient voids, then PVR should be done.	

Simulated Event Team performance	Targeted Clinical Response	Hit
	Team demonstrates mutual support and situational awareness during scenario.	

Simulated Event	Targeted Clinical Response	Hit
DEBRIEF		
Teamwork and Safety review		
	Participates in situational debrief and identifies	
	improvement strategies.	

Total Hits _____

Notes:

Boot Camp Final	Performance Assessment Form
Name of Rater:	Date of rating://

Rate the performance of the learner using the scale below. Place the score in the HIT column.

1 = Observed/Performed correctly

0 = **Omitted/Failed** to perform correctly

X = No opportunity to perform/not required during the scenario

Simulated Event BRIEF	Targeted Clinical Response	Hit
58-year-old male MCC with left femur fracture, subdural hematoma, grade 2 splenic laceration, bilateral rib fractures, and right pneumothorax.	Nurse enters room for morning assessment. Nurse assesses patient's AVPU	
Handoff Report GCS 15 BP 127/58 HR 68 NSR RR 22 T 98.0 oral Pox 96% on 2L O2 via NC Incentive spirometry (IS) 750 ml Lungs clear but diminished bilaterally Chest tube left chest to - 20cmH20 continuous suction Two 18g IV's saline locked.		

Simulated Event Patient responds to nurse shouting his name.	Targeted Clinical Response	Hit
	Determines patient responds to verbal stimuli.	
	Checks airway for patency using jaw thrust.	

Simulated Event Airway patent.	Targeted Clinical Response	Hit
	Assesses breathing by listening to lung sounds.	
	Checks respiratory rate.	
	Checks pulse ox.	
	Assess chest tube insertion site/dressing	
	Check bellows/suction	
	Checks drainage container	

Simulated Event Lung sounds clear but decreased on the right. RR 32,	Targeted Clinical Response	Hit
Pox 88% on 2L, 300ml blood output in past hour chest tube.	Pages trauma team/RRT Increases Oxygen	
BP 98/50(if asks for one)	Assesses circulation by checking radial pulse rate and rhythm	
	Assesses skin, color, and temp	
	Assesses IV access	
Simulated Event Both IV's flush without difficulty.	Targeted Clinical Response	Hit
Radial pulses weak and thready.	Prepares IV fluids to be hung when ordered.	
HR 143 sinus tach no ectopy Skin pale, cool, and moist.	Assesses disability by checking GCS	
	Assesses disability by checking Pupils	
	Assesses disability by checking blood glucose	

Simulated Event GCS 13 (E3 V4 M6) PERRL	Targeted Clinical Response	Hit
Blood glucose 187	Trauma/RRT arrives	
	SBAR handoff given to team.	

Simulated Event Team performance	Targeted Clinical Response	Hit
	Team demonstrates mutual support and situational awareness during scenario.	

Simulated Event	Targeted Clinical Response	Hit
DEBRIEF		
Teamwork and Safety review		
	Participates in situational debrief and identifies	
	improvement strategies.	

Notes:

Total Hits _____

Appendix I

UICU Trauma Registry Data

Age

Injury Severity Score

Trauma Revised Injury Severity Score

ICU length of stay

of ICU visits

HLOS

Ventilator days

Intubated during UICU admit

Reason for UICU

Discharge status

Appendix J

Study Timeline

Oct 6-Jan 4, 2022	Dec 29	Jan 5-Feb3	Feb 5- Mar7	Mar 8- April 8	April 9- May 9	May 25	Feb 4-May 5, 2022
• Pre-boot camp UICU admission data	•Email reminder of study, knowledge and confidence evaluation tools, and demographic survey	• Boot Camps attended and post-0 knowledge and confidence evaluation tools and course evaluation survey were emailed	• 30 day link to the knowledge and confidence evaluation tools emailed	•60 day link to the knowledge and confidence evaluation tools emailed	the knowledge and confidence evaluation	•Data collection period closes.	Post-boot camp UICU admission data

Appendix K

Codebook of Variables for Trauma Boot Camp Program

Variable Na	me	Variable Position in File
Expsex	Experimental group Gender Measurement Level: Nominal Column Width: 8 Alignment: Right Missing Values: 99 <u>Value Label</u> 1 Male 2 Female 3 Other 4 Prefer not to answer 99 Missing/Refused	1
Expage	Experimental group Respondent's age Measurement Level: Scale Column Width: 8 Alignment: Right	2
ExpeduE	Experimental group education level Measurement Level: Ordinal Column Width: 8 Alignment: Right Missing Values:99 <u>Value Label</u> 1 Diploma 2 Associate degree 3 Bachelor degree 4 Master degree 99 Missing	3
ExpYrNrs	Experimental group years as a nurse Measurement Level: Scale Column Width: 8 Alignment: Right	4
ExpYrUn	Experimental group years on the unit Measurement Level: Scale Column Width: 8 Alignment: Right	5
Exppreexp	Experimental group previous trauma experi Measurement Level: Scale Column Width: 8 Alignment: Right	ence 6

IMPACT OF A TRAUMA BOOT CAMP

ExpPre	Experimental group Pretest scores Measurement Level: Scale Column Width: 8 Alignment: Right	7
ExpPost1	Experimental group Postest 2 scores Measurement Level: Scale Column Width: 8 Alignment: Right	8
ExpPost1	Experimental group Postest 2 scores Measurement Level: Scale Column Width: 8 Alignment: Right	9
Consex	Control group gender Measurement Level: Nominal Column Width: 8 Alignment: Right Missing Values: 99 <u>Value Label</u> 1 Male 2 Female 3 Other 4 Prefer not to answer 99 Missing/Refused	10
Conage	Control group Respondent's age Measurement Level: Scale Column Width: 8 Alignment: Right	11
Conedu.	Experimental group education level Measurement Level: Ordinal Column Width: 8 Alignment: Right Missing Values:99 <u>Value Label</u> 1 Diploma 2 Associate's degree 3 Bachelor's degree 4 Master's degree 99 Missing	12
ConYrNrs	Control group years as a nurse Measurement Level: Scale Column Width: 8 Alignment: Right	13
ConYrUn	Control group years on the unit Measurement Level: Scale Column Width: 8 Alignment: Right	14

IMPACT OF A TRAUMA BOOT CAMP

Conpreexp	Control group previous trauma experience Measurement Level: Scale Column Width: 8 Alignment: Right	15
ConPRE	Control group Pretest scores Measurement Level: Scale Column Width: 8 Alignment: Right	16
ConPos	Control group Postest scores Measurement Level: Scale Column Width: 8 Alignment: Right	17

Appendix L

SPSS Data File

le	Edit View	Data	Transform	<u>A</u> nalyze	<u>G</u> raphs <u>U</u> t	ilities E <u>x</u> tensions <u>W</u> in	dow <u>H</u> elp					
		00		3 H		i i k 📲						
	Na	me	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
1	Expsex		Numeric	8	0	Sex	{1, Male}	99	8	I Right	💑 Nominal	🔪 Input
2	Expage	1	Numeric	8	0	Age	None	99	8	Right	Scale 🖉	S Input
3	Expedu	i	Numeric	8	0	Level of Education	{1, Diploma}	99	8	遭 Right	J Ordinal	> Input
4	ExpYrN	Irs	Numeric	8	0	Years as a Nurse	None	99	8	Right	Scale Scale	> Input
5	ExpYrU	In	Numeric	8	0	Years on the unit	None	99	8	🗃 Right	Scale 8	> Input
6	Exppre	exp	Numeric	8	0	Previous trauma experi	{1, Yes}	99	8	■ Right	Scale Scale	> Input
7	ExpPre	t	Numeric	8	0	Pre-test	None	99	8	Right	Scale 8	> Input
8	ExpPos	s1	Numeric	8	0	Post test #1	None	99	8	Right	Scale Scale	> Input
9	ExpPos	52	Numeric	8	0	Post-test #2	None	99	8	I Right	Scale	> Input
10	Consex	:	Numeric	8	0	Control Sex	{1, Male}	99	8	Right	\delta Nominal	> Input
11	Conage		Numeric	8	0	Control Age	None	99	8	圖 Right	Scale Scale	> Input
12	Conedu		Numeric	8	0	Control Level of Educat	{1, Diploma}	99	8	Right	Ordinal	> Input
13	ConYrN	Irs	Numeric	8	0	Control Years as a Nurse	None	99	9	Right	Scale Scale	> Input
14	ConYrL	In	Numeric	8	0	Control Years on the unit	None	99	8	🗃 Right	Scale Scale	> Input
15	Conpre	exp	Numeric	8	0	Control previous traum	{1, Yes}	99	8	Right	Scale Scale	> Input
16	ConPre		Numeric	8	0	Control pre-test	None	99	8	3 Right	Scale Scale	> Input
17	ConPos	3	Numeric	8	0	Control post-test	None	99	8	I Right	Scale	> Input