
Syntax Free Software Application for Intro Computer Science Courses: 

Critique 

Jordan Stuck & Dr. Nathaniel Lahn 

Introduction 

Through my experience as a tutor at the Harvey Center at Radford University, I have a noticed a 

lack of knowledge from students who have completed our intro courses here at Radford. The 

knowledge that they aren’t retaining are key concepts that will help them succeed in future 

courses and in their career. These concepts are ideas such as: control flow, variables, functions, 

types, and generalization. Without the key concepts nailed down it is impossible for students to 

succeed in this field later in their academic and professional journey. I believe that the reason for 

this gap in knowledge is because students are coming in with little to no programming 

experience and they are trying to learn these key concepts at the same time as learning syntax for 

a programming language. The goal of this project was to separate the syntax of programming 

from the important ideas required to succeed by creating a Graphical User Interface (GUI) based 

software. This software would help the user visualize what code looks like without needing to 

type anything in. This project was intended to be added to course material to CS 101 in order to 

help the development of students’ knowledge early in their academic career. 

 

Context 

The challenge that is being faced at Radford is that many students are coming out of the 

introduction computer science courses without the base knowledge required for success. The 

school has made great efforts to help fix this challenge through the development of new intro 

courses. The courses CS 118 and 119 were created in order to separate CS 120 into an easier and 



slowed down two-course class. This helped in some ways but in many ways, from personal 

conversations with students, they felt it was too slow for them. I also noticed that students were 

more focused on memorizing syntax than attempting to understand the key concepts that were 

being taught. Other universities have had similar issues with retention of information and sought 

to remedy this through the creation of low-level introduction courses. At UIC (University of 

Illinois Chicago), after their introduction of this course they saw their success rate of students 

increase by 9% and retention rate by close to 22% (Sloan & Troy, 2008). Radford has sought a 

similar approach through the introduction of CS 101 to the curriculum. This course is intended to 

have a slow introduction for students with little to no programming experience. It is supposed to 

help build a foundational skillset for students to understand key concepts without harping on 

syntax of a programming language. I built this software application in order to help develop the 

students’ understanding of these valuable ideas. 

 

Strengths & Weaknesses 

There were many strengths to this project, one of them being that it clearly created a separation 

between the syntax of java, and the logic of the code. It provided students with visualizations of 

code, as well as variables and functions (Figure 1). 



 

Figure 1: Layout of Software 

With this application students no longer need to worry about how to write out the code 

but just need to understand the goal of the assignment. The students will then be able to reason 

their way through each problem without trying to multi-task and understand how to write code. 

Another strength of the project is that it is generalizable for the professors to use in any way they 

see fit. The professors can input their own problem sets into the program so that students can 

then complete the problems given by the instructor. There is no limit on the number of problems 

the program can have, so a professor could assign multiple problem sets focused on different key 

areas of programming. Finally, the last strength of the project would be video documentation for 

the professors to use. I provided a short video instructing the viewer on how to create their own 

problems and add it to the interface. This allowed it to be very user friendly for the professors to 

create the problems for their classes. 



 While my project had many strengths there were also a great deal of weaknesses and 

limitations regarding it. The first weakness I would like to point out is the structure of my 

underlying code. Dr. Lahn and I were focused on producing a presentable product over having 

fully reliable code. This was due to the tight time constraints on this project, as I was only able to 

work on it over the Spring 2025 semester. The code is quite messy and requires quite a lot of 

revision to make it cleaner to meet “industry” standards. The next weakness to address would be 

the usability of the software to the students. While it is easy for professors to create multiple 

problems at a time, it is probably difficult to understand the task at hand for each problem as 

there is no description shown for any of the problems, nor are there instructions on how to use 

the software. Finally, the last weakness of this project would be the structure of the code on the 

interface. The code does not directly emulate coding format as if the students were coding in an 

Integrated Development Environment (IDE). This makes the code that is displayed is hard to 

follow and therefore makes it more challenging for the students to complete their problems. 

 

Next Steps 

The weaknesses and limitations of the project of evident after completing this project. It is 

important to note the next potential steps that can be taken to improve the software, so that it can 

potentially be used for classes in the future. The first step would be to run through the backend 

code for the software and clean it up. This would include adding Java Doc comments on each of 

the functions and classes, and also adjusting the code it is not tightly coupled (tightly coupled 

simply put means when one part of the code shifts, many other changes are required in other 

locations in the code). Another step that could be taken would be to provide an instructions field 

in the problem class and display the instructions in a separate frame of the application. This 



would help the students understand exactly what needs to be completed to solve each problem. 

This frame could also give basic instructions on how to use the application through dragging and 

dropping icons. This frame could also contain the buttons which navigate the code shown in the 

interface. The final step to develop this project further is to structure the code displayed in the 

interface to reflect that of an actual IDE. Overall, this project was successful and can be used in a 

class environment with a few refinements as mentioned above. 

References 

Sloan, R. H., Troy, P. (2008). Cs 0.5: a better approach to introductory computer science for 

majors. ACM SIGCSE Bulletin. 40(1). 

https://dl.acm.org/doi/abs/10.1145/1352322.1352230 

 


